

Functional Genomics and Proteomics

National Centre for Biomolecular Research Faculty of Science Masaryk University

Protein characterization by mass spectrometry

C7250

Part IV

Zbyněk Zdráhal

RG Proteomics, CEITEC-MU Proteomics CF, CEITEC-MU NCBR FS MU zdrahal@sci.muni.cz

Appropriate sample preparation – key stone of success

...

Demandingness of proteome analysis

 protein number exceeds substantially number of genes *human genome contains ~21 000 genů, but human proteome might contain*

 necessity of protein complex analysis for deeper understanding mechanisms of cellular processes about 80% of proteins perform their funcions only as a part of a complex

Fractionation/separation

C7250

to obtain maximum information

Direct LC-MS/MS analysis of the whole sample

Fractionation/separation C7250

the aim: **to simplify extremely complex mixture to separate specific group of proteins/peptides** (e.g. phosphopeptides)

necessity of combination of separation principles – **multidimensional separation** selection of appropriate combination for given experiment (separation dimension might be also selected method of MS analysis)

electrophoretic techniques:

- ****** isoelectric focusing (in-gel, in-liquid)
- ***** SDS PAGE
- **# 2D gel electrophoresis (DIGE)**
- ****** capillary electrophoresis

chromatographic techniques:

immunoprecipitation

- **Example 1** liquid chromatography
	- **reverse phase**
	- ionex
	- molecular sieve
	- affinity (IMAC, MOAC, antibody)
	- HILIC (hydrophilic interaction chromatography)

Standard 1-D approaches

"SIMPLE" MIXTURES

Protein isolate of bacteriophage – 2-D separation

C7250

MudPIT (multidimensional protein identification technology)

2 -D LC peptides

Fig. 1 Experimental set-up for 2D LC

2-D LC (peptides)

Fig. 2 Chromatograms of the digest mixture. Upper trace is the result of a separation without SCX. The next chromatograms are the result of the 5, 50 and 100 mM fractions. (Not all fractions are shown)

Dionex application note

C7250

www.ace-hplc.com

Characterization of proteome and phosphoproteome of HEK293 cells

cooperation with Assoc. Prof. Bryja group, FS MU

C7250

LC-separation of the digested sample in 1D (high pH)

1 2 3 4 5 6 7 8 **9 10 11 12 13 14 15 16 17 18 19 20 21 22 23** 24 25 26 27 28 29 30

Number of identified proteins

Diameter of HPLC column *vs* **sensitivity**

Figure 5 Mass sensitivity benefit. Injection of the same sam ple amount on HPLC columns with decreasing internal di -.
ameter. Stationary phase: ZORBAX® SB-C18; length: 150 mm; solvent: water/acetonitrile, 40/60; flow rate: see dia gram; sample: isocratic checkout sample; injection volume: 0.1 μ l; third peak: biphenyl, 200 nq; temperature: 25 °C; detection wavelength: 230 nm.

"Sensitivity increases with a decrease in column diameter because the same sample mass (amount) is eluted in a smaller volume. Therefore the concentration of the eluting peak is higher and the detection signal is stronger."

Amer. Lab., 2001, 33 (10), 26-38.

C7250

Capillary and nano columns

Increase in sensitivity ₩ reduction of injected sample amounts 豢 reduced consumption of solvents *

Table 27. Sensitivity Increase

¹For same sample mass

www.ace-hplc.com

2-D LC peptides

sorbents 1-D: ionex reverse phase **HILIC** IMAC (phospho) affinity (e.g. lectin – glyco)

2-D: reverse phase

On-line *vs* **Off-line**

automation flexibility

optimalization continuous collection of fractions

LC –MALDI (peptides)

Sample storage

LC separation of complex protein mixtures

C7250

LC separation of complex protein mixtures

C7250

Figure 1: Multidimensional LC work flow.

Combination of GE a LC separation

from Carter et. al. The Plant Cell, 2004, 16, 3285–3303.

Figure 2. Distribution of Identified Proteins by Different Methods.

Overlap of the different protein sets is shown. Numbers in parentheses indicate the total number of proteins found by a particular method.

from Carter et. al. The Plant Cell, 2004, 16, 3285–3303.

Example of multidimensional proteome analysis (screening)

Depleted blood plasma (3500 – 9000 proteins ??)

20 fractions

LC (RP)

0. dimension

1. dimension

2. dimension

1600 fractions

3/4. dimension

" ∞ " fractions

from H. Wang, Molecular & Cellular Proteomics, 2005, 4, 618–625.

A draft map of the human proteome

Min-Sik Kim et al., Nature 509, 575-581 doi:10.1038/nature13302

Targeted separation - immunoaffinity fractionation (Y(phos))

from A.D. Zoumaro-Djayoon et al. / Methods 56 (2012) 268–274

Targeted MS analysis of selected proteins

- quadrupole **Q1** and **Q3** are fixed to selected values of *m/z* (Q1-precursor and Q3- selected fragment), **only precursors displaying production of selected fragment** during fragmentation in collisional cell **are recorded**
- enables to follow tens of reactions (transitions) during analytical run (MRM)

High throughput C7250

Figure 6: Schematic representation of an on-line two-dimensional HPLC system, including an integrated sample preparation step. (Adapted from reference 10 with permission.)

+ Miniaturization - chip technology

OO Functional Genomics and Proteomics

National Centre for Biomolecular Research Faculty of Science Masaryk University

Protein quantification by MS

Protein quantification by MS

Approaches:

using isotopically different tags

Absolute quantification

determination of protein concentration (amount) by addition of corresponding standard with known amount (AQUA, PSAQ)

Relative quantification

evaluation of relative changes of the protein content in compared samples

label free

metods of absolute and relative quantification based on statistical processing of MS, or MS/MS data advantage of this approach is possibility of comparison of unlimited number of samples and absence of derivatization reaction or isotopically labeled standards

Relative quantification approaches

Overview of relative quantification methods

W. Yan, S.S. Chen, *Briefings in functional genomics and proteomics* **4** (1), 1–12, (2005)

Stable Isotope Labelling with Amino acids in Cell culture (SILAC)

 in vivo

o proteins are labeled by growing cells in media containing isotopically labeled amino acids (e.g. ²H-Leu, ¹³C-Lys, ¹³C-Tyr,¹³C-Arg, ¹³C/¹⁵N-Arg)

picture from Ong et al.: *MCP* **1**(2002), 376

ICAT ... Isotope-Coded Affinity Tags

technology for protein expression analysis

- \checkmark improved quantitation of a wider range of proteins
- \checkmark overcomes limitations of 2-D gel method (e.g. membrane, low abundant proteins)

 \triangleright tags specific for cysteine-containing peptides (reduction of sample complexity) \triangleright easy automation of a procedure

ICAT analysis

C7250

Comparison of *in vivo* **and** *in vitro* **quantification methods** (SILAC vs ICAT)

from Ong et al.: *MCP* **1** (2002), 376

Mass Coded Abundance Tagging (MCAT)

\blacktriangleright tryptic digestion

 \blacktriangleright modification of digest of selected sample (K)

E mixing **nemodif/modif** in ratio 1:1

Cagney G., Emili A.: *Nature Biotechnol* **20** (2002), 163-170

MCAT

C PEPTIDE QUANTITATION

Cagney G., Emili A.: *Nature Biotechnol* **20** (2002), 163-170

MCAT

Cagney G., Emili A.: *Nature Biotechnol* **20** (2002), 163-170

MCAT

possibility of utilization of derivatization for *de novo* sequencing *b ions unchanged , y ions in doublets (42 Da)*

Reductive alkylation - dimethylation

- lysine and N-term of peptide
- isotopically labeled formaldehyde (D, ¹³C)

Hsu et al., Anal.Chem. 2003

Reductive alkylation - dimethylation

Table 1 The combination of different isotopic reagents in the five-plex isotope dimethyl labeling method

C7250

Reductive alkylation - dimethylation

Fig. 2 Mass resolution of five-plex isotopically labeled peptides. MS spectra of Lys-C digested peptides with different charge states $(+1, +2, +3)$ $+3$ and $+4$) $(1:1:1:1:1$ ratio).

C7250

iTRAQ

C7250

• isobaric tags (4, 8), preferentially on Lys

- labeled samples have the same behavior during LC separation and MS analysis
- quantification based on intensity ratios of reporter ions after MS/MS

Applied Biosystems

similarly TMT tags (Thermo Fisher Scientific) $-6/10$ tags (see later)

iTRAQ

Applied Biosystems

iTRAQ

Applied Biosystems

iTRAQ

Figure 8. Identification and Quantitation of iTRAQ™ Reagent labeled peptide, ILESHDVIVPPEVR, from Carbamoylphosphate synthetase, which is up-regulated in both Xm1 Δ and Upf1 Δ mutants. Illustrated in panel A is the TOF MS Spectrum and the reporter ion region is expanded in panel B. The diagnostic reporter ions of 114.1, 115.1, and 116.1 are those for the Xrn1 Δ , Upf1 Δ and wild-type S. cerevisiae strains, respectively. The 117.1 peak is from a specific amount of spiked-in synthetic peptide idenpently labeled with the iTRAQ Reagent 117.

Applied Biosystems

TMT labels

Tandem Mass Tags

from http://planetorbitrap.com

TMT C7250

- isobaric labels (up to 16-plex)
- MS/MS

lysine labeling

• Cysteine-reactive mass tags (6-plex)

quantitation of the relative abundance of cysteine modifications, such as Snitrosylation, oxidation and disulfide bonds

• Carbonyl-reactive mass tags (6-plex) *glycan, steroids, or oxidized proteins quantification*

Thermo Fischer Scientific

TMT

Thermo Fischer Scientific

TMT

Reagents contain different numbers and combinations of 13C and 15N isotopes in the mass reporter. The different isotopes result in a 10-plex set of tags that have mass differences in the reporter that can be detected using **high resolution** Orbitrap MS instruments.

Thermo Fischer Scientific

EASI-tag

Easily Abstractable Sulfoxide-based Isobaric tag

(**a**) Molecular structures of the triplex version of EASI-tag. The isobaric labeling reagents are composed in a modular way of **four functional groups** and feature a central sulfoxide moiety, which introduces an asymmetric, low-energy cleavage site (zig-zag lines indicate fragmentation site). The stable-isotope labeled positions of the neutral loss and equalizer group for multiplexing are indicated by asterisks. Standard labeling protocols can be applied to couple peptides via **the amine-reactive moiety**.

(**b**) Mass spectra of an EASI-tag-labeled yeast peptide mixed in a ratio of 1:3:10. HCD fragmentation of the doubly charged precursor ion abstracts the neutral loss group and yields **the peptide-coupled reporter ion cluster**.

C7250

EASI-tag

Easily Abstractable Sulfoxide-based Isobaric tag

(**c**) Co-isolation of the natural isotope cluster in a standard isolation window centered on the precursor ion (upper panel) convolutes the relative abundance of peptide coupled reporter ions. An asymmetric isolation window (lower panel) that suppresses the signal from adjacent isotope peaks and enables direct quantification of reporter ions. (**d**) The precursor mass information is retained in the peptide-coupled reporter ions for EASI-tag labeled peptides. Colored peaks indicate the peptide-coupled reporter ions from an identified yeast peptide in a two proteome experiment (mixing ratios: 1:3:10 for yeast & 1:1:1 for human). Grey peaks are peptide-coupled reporter ions from a co-isolated peptide.

(**e**) EASI-tag- and TMT-labeled HeLa peptides were fragmented with normalized collision energies between 10 and 34. ($N = 17,565$ precursors for EASI-tag & 20,610 for TMT)

bioRxiv preprint first posted online Nov. 27, 2017; doi: http://dx.doi.org/10.1101/225649

C7250

Label – free approach

- No labels
- Samples measured individually
- Comparison of "unlimited" number of samples

Identification based on MS/MS data, connection of identity to individual signals (intensity, area)

LC-MS/MS noise removal

peak detection intensity/area calculation for individual peaks

normalization imputation of missing values

calculation of fold changes for individual proteins among samples

Statistics evaluation

significant changes in proteome induced by stimuli under study

Critical steps:

- data normalization
- imputation of missing values (DIA reduction of number of missing values)

Label – free approach

MA plots - dependence of $(x-y)$ on $(x+y)/2$

Label – free approach

Absolute quantification using AQUA peptides

your protein of interest

for quantitation

Select an optimal tryptic peptide and stable isotope amino acid from the sequence of

Optimize LC-MS/MS separation protocol

- **AQUA Peptide Selection**
- \triangleright Order selected peptide
labeled (¹⁵N, ¹³C) **labeled (¹⁵N, ¹³C)**
- **Adding labeled peptide to protein mix**

 Digest

 Analyze by LC-MS/MS to quantitate protein of interest

Only for selected protein

Absolute quantification

AQUA peptides QconCAT PSAQ

synthesis of isotopically labeled proteotypic peptides

addition of known amount into sample

digestion

MS analysis

construction of artificial gene for expression of proteotypic peptides originated from up to 20 proteins

expression in *E.coli* using labeled medium

purification of artificial protein

addition of known amount into sample

digestion

MS analysis

Rivers at al., MCP 6, 1416 (2007)

expression of the whole izotopically labeled protein (plus tag for purification)

protein purification

addition of known amount into sample

digestion

MS analysis

Brun et al., MCP 6, 2139 (2007)

Absolute quantification Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA)

Table 1. Plasma Protein Targets

N.L. Anderson, J. Proteome Res., 3, 235 (2004)

C7250

Targeted MS/MS analysis of selected proteins relative /absolute quantification **multiple reaction monitoring (MRM)**

screening – selection of candidate protein

method establishment (selection of MRM transitions – peptide + selected fragment)

final analysis and data processing

للماس

Protein mixture

Peptides

Similarly PRM

http://www.srmatlas.org

LC-MS/MS – MRM mode
Multiplex Immuno-Liquid Chromatography−Mass Spectrometry− Parallel Reaction Monitoring (LC−MS−PRM) Quantitation of immune markers CD8A, CD4, LAG3, PD1, PD-L1, and PD-L2 in Frozen Human Tissues

Zhang et al., J. Proteome Res. 2018, 17, 3932−3940

C7250

Accurate MS-based Rab10 Phosphorylation Stoichiometry

Karayel et al., Mol Cell Proteomics (2020) 19(9) 1546–1560

assay to measure increased phospho Rab levels using synthetic stable isotope-labeled analogues for both phosphorylated and non-phosphorylated tryptic peptides surrounding Rab10-Thr73

Limit of detection (LOD) of SIL Rab10-pThr73 tryptic peptide (FHpTITTSYYR) with various acquisition methods; full MS, SIM, mxSIM and PRM.

Fig. 1. Schematic overview of QconCAT-based quantification of the yeast proteome using SIL-SRM methodology. The experimental workflow is depicted in schematic form, showing how chemostat grown yeast samples are extracted, using four biological replicates, for analysis. These samples were combined with designer QconCAT proteins, containing surrogate quantotypic peptides, expressed in a stable-isotope labeled media. SRM assays, designed using a digest of the expressed QconCATs to generate Q-peptides, were then used to quantify the parent proteins. Mixtures of purified QconCAT and yeast proteins were mixed at four concentrations (one of which contained yeast but no QconCAT) and analyzed by SRM-MS to yield SRM chromatogram peak groups for both light (endogenous yeast) and heavy (Q-) peptides. Subsequent quality control by signal:noise cutoffs and mProphet FDR (estimated from decoy transitions) yielded peptide-level copies per cell values, which were then integrated to the protein level for a final quantification. *Lawless C., MCP,15, 1309–1322, 2016.*

