Bioplastics and other alternatives of plastics

Helena Pokorná Marie Ptáčková

Brief history of plastics

- Plastics are a wide range of synthetic or semi-synthetic materials that use polymers as a main ingredient

- Organic polymers
- Chemical modification of organic polymers
- Completely synthetic plastics

- 1839 discovery of vulcanization process (Charles Goodyear)
- 1907 the world's first fully synthetic plastic Bakelite (Leo Baekeland)

Environmental effects of using plastics

- Plastics are resistant to many natural degradation processes
- Problematic of microplastics

Solution of plastics pollution - Recycling

Solution of plastics pollution - Decomposition of plastics

- Photo-oxidation process
- Decomposition of plastics by various types of bacteria, fungi or larvae

<u>Appl Environ Microbiol.</u> 2011 Sep; 77(17): 6076–6084. doi: <u>10.1128/AEM.00521-11</u> PMCID: PMC3165411 PMID: <u>21764951</u>

Biodegradation of Polyester Polyurethane by Endophytic Fungi^{*}

Jonathan R. Russell,^{1,#} Jeffrey Huang,^{1,#} Pria Anand,^{1,#} Kaury Kucera,¹ Amanda G. Sandoval,¹ Kathleen W. Dantzler,¹ DaShawn Hickman,¹ Justin Jee,¹ Farrah M. Kimovec,¹ David Koppstein,¹ Daniel H. Marks,¹ Paul A. Mittermiller,¹ Salvador Joel Núñez,¹ Marina Santiago,¹ Maria A. Townes,¹ Michael Vishnevetsky,¹ Neely E. Williams,¹ Mario Percy Núñez Vargas,² Lori-Ann Boulanger,¹ Carol Bascom-Slack,¹ and Scott A. Strobel^{1,*}

Environment International Volume 145, December 2020, 106106

Biodegradation of Polyvinyl Chloride (PVC) in *Tenebrio molitor* (Coleoptera: Tenebrionidae) larvae

Bo-Yu Peng ª, Zhibin Chen ª, Jiabin Chen ª, Huarong Yu ^b, Xuefei Zhou ª, Craig S. Criddle ^b, Wei-Min Wu ^b 유 쩓, Yalei Zhang ª 유 쩓

Plastic Degradation by Extremophilic Bacteria

Nikolina Atanasova, Stoyanka Stoitsova, Tsvetelina Paunova-Krasteva and Margarita Kambourova *©

Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 26, 1113 Sofia, Bulgaria; nikolina@microbio.bas.bg (N.A.); stoitsova_microbiobas@yahoo.com (S.S.); pauny@abv.bg (T.P.-K.) * Correspondence: margikam@microbio.bas.bg

Solution of plastics pollution – Alternative materials

- Using degradable materials
- Bioplastics

What is bioplastic?

- Biodegradable, biobased, or both

What is bioplastic?

- Biodegradable, biobased, or both
- Bioplastics represents 1% of world plastic production

Global production capacities of bioplastics in 2020 (by market segment)

Source: European Bioplastics, nova-Institute (2020). More information: www.european-bioplastics.org/market and www.bio-based.eu/markets

Global production capacities of bioplastics 2020 (by material type)

Source: European Bioplastics, nova-Institute (2020)

More information: www.european-bioplastics.org/market and www.bio-based.eu/markets

Biobased and biodegradable bioplastics - two ways of production

- Polymers are extracted from biomass

- Polymers are produced by microorganisms

Polymers extracted from biomass

- polymers
 - starch, cellulose, lignin, chitin, carrageenan, agar, ...
 - casein, keratin
- biomass resources
 - land crops (corn, potato, rice), seaweed, cotton
 - wood industry byproducts (wood chips, sawdust)
 - food waste (corn husks, fruit peels and seeds, spent coffee grounds)

From biomass to bioplastic

- polymer is extracted from biomass
- polymer is dissolved in water

- additional biopolymers, plasticizers, fillers are added

- melt-processing - gelatinization

- a film is made

Currently on the market

- Starch blends (TPS thermoplastic starch)
 - food packaging
 - poor water resistance
- Polymers from algin and carrageenan extracted from seaweeds
 - edible food packaging
- Casein protein polymers
 - adhesives, edible food packaging
 - controlled release drug delivery systems

(e) Sargassum sp.

Currently on the market

- Chitin based polymers
 - marine crustaceans (crab, lobster)
 - hazardous substances used for extraction

- Cellulose acetate
 - fibers, films
 - hazardous substances
- Polylactic acid

Polylactic acid PLA

- Starch cleavage by heat or acids/enzymaticaly to glucose
- Fermentation of glucose to lactic acid
- Polymerization of lactic acid to PLA

Polylactic acid PLA

- Starch source: corn, cassava, ...
- Properties:
 - biodegradable?
 - degradation rate between 3-5 years
 - specific conditions (60 °C, moisture, soil or compost)

This is an open access article published under a Creative Commons Attribution (CC-BY) <u>License</u>, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

pubs.acs.org/journal/ascecg

Perspective

Degradation Rates of Plastics in the Environment

Ali Chamas, Hyunjin Moon, Jiajia Zheng, Yang Qiu, Tarnuma Tabassum, Jun Hee Jang, Mahdi Abu-Omar, Susannah L. Scott,* and Sangwon Suh*

Polymers produced by microorganisms

- PHA (Polyhydroxyalkanoates) are the only biopolyesters completely synthesized by biological means

Polyhydroxyalkanoates PHA

Other alternatives

Published: 22 May 2011

Metabolic engineering of *Escherichia coli* for direct production of 1,4-butanediol

Harry Yim, Robert Haselbeck, Wei Niu, Catherine Pujol-Baxley, Anthony Burgard, Jeff Boldt, Julia Khandurina, John D Trawick, Robin E Osterhout, Rosary Stephen, Jazell Estadilla, Sy Teisan, H Brett Schreyer, Stefan Andrae, Tae Hoon Yang, Sang Yup Lee, Mark J Burk & Stephen Van Dien 🖂

Nature Chemical Biology 7, 445–452 (2011) Cite this article

22k Accesses | 742 Citations | 62 Altmetric | Metrics

Summary

Type of polymer	Production	Biodegradable	+	-
PLA polylactic acid	microbial and chemical	Slowly and only under specific conditions (60 °C)	 suitable for wide variety of applications less energy for production 	 problematic degradation occupation of land may decrease microbial diversity
Starch blends	chemical	Yes	 availabilty and low cost of starch 	Poor gas barrier properties and water resistance
Seaweed polymers	chemical	Easily	 easy cultivation chemical-independent production 	Low thermal stability
PHA polyhydroxyalkano ates	microbial	Yes	 independence from the agricultural sector (cyanobacteria, microalgae) may increase microbial diversity in area of its degradation 	High production price

Thank you for your attention :)

