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Quick Review
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For a hypothetical system with two interacting nu-
cleus (A and B) and two electrons (ei and ej).
The total energy Etot should represent all the in-
teractions such as:
Nuclear Kinetic energy (TN ),
Electronic Kinetic Energy (Te),
Nuclear-Nuclear Potential Energy (VNN )
Electron-Electron Potential Energy (Vee)
Nuclear-Electron Potential Energy (VNe).

Etot = TN + Te + VNN + Vee + VNe (1)
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invoking Born-Oppenheimer approximation making
nuclear kinetic energy zero and nuclear potential
energy constant, the we can have the total Elec-
tronic Energy from equation 1

Ee = Te + Vee + VNe (2)



Methods of Quantum Chemistry

The assessment of Electronic Energy can be provided by
various methods.
WaveFunction Based:

Hartree-Fock (HF)
Møller-Plesset (MP)
Configuration Interaction (CI)
Coupled Cluster (CC)

Electron Density Based
Density Functional Theory (DFT)
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(I) WaveFunction Based Methods
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Hartree Method

distinguishable electrons
wavefunction breaks Antisymmetry (Pauli principle)
does not include Electron correlation
case 3Li

ΨHartree = 1s(1)α1s(2)β2s(3)α (4)
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Hartree-Fock Method

indistinguishable electrons, antisymmetry is achieved by assuming that
Ψ can be represented as single Slater determinant

for example, Slater determinant for 3Li:

α electrons: without bars
β electrons: with bars

ΨHF =
1√
3!

∣∣∣∣∣∣
1s(1) 1s(2) 1s(3)
1s(1) 1s(2) 1s(3)
2s(1) 2s(2) 2s(3)

∣∣∣∣∣∣ (5)

rows represent “Atomic Orbitals" while columns represent “individual
electrons"

to make the HF Method feasible, each atomic orbitals (Columns) in the
Slater Determinant is approximated as a linear combination of basis
sets (became known as Hartree-Fock-Roothaan SCF Procedure)
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Self Consistent Field (SCF)

every electron is optimized in time-averaged field of other
electrons
many-body problem→ One-body problem
iterative optimization of basis functions coefficients until
desired convergence is reached
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HF-SCF Procedure, the Fock operator

energy Operator (Fock Operator), depends only on coordinates of
single electron

for orbital φk:

F̂(i)φk(i) = εkφk(i), (6)

where
F̂ (i) = −1

2
∇2
i −

ZNu
ri−Nu

+
∑
j=1

(Ĵj − K̂j) (7)

1
2
∇2
i is kinetic energy operator

ZNu
ri−Nu

is attraction between electrons and nuclei

Ĵ is the Coulombic repulsion operator

K̂ is the electronic Exchange operator
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Coulombic Term, J

local operator
classical repulsion between electrons
rate of interaction with other electrons

Ĵj(1)φi(1) =

[∫
φ∗j (2)

1

rij
φj(2)dτ(2)

]
φi(1) (8)

basically this is a quantum mechanical version of Coulombic
repulsion because we are looking at the ’probability’ and not the
exact location of the electrons
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Exchange Term, K

non-local operator
only for electrons with same spin

K̂j(1)φi(1) =

[∫
φ∗j (2)

1

rij
φi(2)dτ(2)

]
φj(1) (9)

If φi and φj have opposite spin, then∫
α 1
rij
βdτ = 0

If φi and φj have the same spin, then∫
α 1
rij
αdτ 6= 0

exchange energy, described exactly
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HF Algorithm, A Psuedo EigenValue Method
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F̂ (i) = Ĥ(1) +
N∑

j=1

(Ĵj − K̂j) (10)

Ψ =
k∑

v=1

cviφv (11)

F̂ [
k∑

v=1

Cviφv ] = εi[
k∑

v=1

Cviφv ]

(12)

F̂C = εSC → F
′

= S
−1/2

FS
1/2 → F

′
= C
′
εC
′

(13)

C
′ → Cvi (14)



Total Energy in HF method

HF electronic energy is expressed as follows:

EHF =
N∑
i=1

2εi − N∑
j≥i

(2Jij −Kij)

 (15)

εi are the potential and kinetic energies of the electron
Jij is the Coulomb integral
Kij is the exchange integral

the final HF energy:

Etot,0K = EHF + VNN + ZPE (16)
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Advantages & Disadvantages of the HF method

Advantages
+ very fast method (scaling with N4)
+ good description of bond lenghts (within 1% of
experiment)
+ conformation energies predicted within 1-2 kcal/mol

Disadvantages
- doesn’t treat electronic correlation
- prediction of dissociation energies too high (closed-shell
→ two open-shell molecules)
- too high dipole moments
- vibrations about 10% too high (anharmonicity)
- potential energy scans are meaningless
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Post-Hartree Fock Methods

designed for recovery of correlation energy which are
computationally very demanding
Perturbative approach (Møller-Plesset, MP)
Variational approach (Configuration Interaction, CI)
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Perturbation Theory

system of mathematical methods where one knows exact
solutions of simple problems and constructs conclusions to
advanced ones
the use of Taylor expansions (a powerful tool Math has to
offer):

fi(λ) = fi|λ=0 +
∂fi
∂λ

∣∣∣∣
λ=0

λ

1!
+

∂2fi
∂λ2

∣∣∣∣
λ=0

λ

2!
+ ... (17)

for specific accuracy a finite number of terms is used
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Møller-Plesset Method

method based on Rayleigh-Schrödinger perturbation
theory
adds a perturbation to the unperturbed Hamiltonian:

Ĥ = Ĥ0 + λĤ ′ (18)

Ĥ0 is the HF Hamiltonian
λ is a parameter which determines the size of perturbation

Perturbation OFF: λ = 0 : Ĥψi = Eiψi
Perturbation ON: λ = 1 : Ĥφi = Wiφi
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Corrections to HF energies

HF energy is the sum of zeroth- and first-order corrections
electron correlation energy is sum of higher-order
corrections

(Ĥ0+λĤ ′)(φ0i +λφ10+λ2φ2i ...) = Wi(λ)(φ0i +λφ10+λ2φ2i ...) (19)

Wi(λ) = W 0
i +W 1

i +W 2
i ... (20)

first-order correction is calculated as:
W 1
i = φiĤ ′φi (21)
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Calculating Correlation Energies

exciting electrons from occupied orbitals to virtual ones
MP2 (MP with 2nd order correction):

Two electron operator
Only double excitation contribute

higher order corrections include higher order excitations

HOMO

LUMO

GS             Single        Double     Triple

Virtual orbitals

Occupied orbitals
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Interaction between Two Molecular Fragments

strength of the interaction depends on square of the
overlap
is inversely dependent on the energy difference between
the orbitals

Ψa, Ea
Ψb, Eb

W 2
a =

|ΨaĤ ′Ψb|2

Ea − Eb
and W 2

b =
|ΨaĤ ′Ψb|2

Eb − Ea
(22)
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Variational Theorem

the energy of any “trial” wavefunction (W ) is always an
upper bound to the exact energy groundstate (Eexact).
variation integral:

W ≡
∫

Ψ∗CIĤΨCIdτ∫
Ψ∗CIΨCIdτ

≥ Eexact (23)

ΨCI can be expanded as a linear combination of
eigenfunctions Φi:

ΨCI =
∑
i

ciΦi (24)
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Linear Variation Method

variation integral expressed as sum of eigenfunctions Φi:

W =

∑
ij cicj

∫
Φ∗i ĤΦjdτ∑

ij cicj
∫

Φ∗iΦjdτ
(25)

substitution with:
Hij =

∫
Φ∗

i ĤΦjdτ ... Interaction integral
Sij =

∫
Φ∗

i Φjdτ ... Overlap integral

W =

∑
ij cicjHij∑
ij cicjSij

(26)
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Linear Variation Method

differentiation with respect to ci yields a non-trivial solution
only if “secular determinant” equals to 0:∣∣∣∣∣∣∣∣∣
H11 −WS11 H12 −WS12 ... H1n −WS1n

...
...

...
...

H11 −WS21 H22 −WS22 ... H2n −WS2n
Hn1 −WSn1 Hn2 −WSn2 ... Hmn −WSmn

∣∣∣∣∣∣∣∣∣ = 0 (27)

if orthogonal basis system is used, then Sij = δij
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Configuration Interaction (CI)

description using Slater determinant is approximate

exact description using linear combination of Slater determinant
for GS and excited states

Full CI
all excitations calculated
only for tiny systems and small basis sets
size consistent

Truncated CI
only selected excitations included
for larger systems
CIS, CISD, CID, CISDT...
Size Inconsistent

ΨCI = c0ΨHF +
∑
S

cSΨS +
∑
D

cDΨD +
∑
T

cT ΨT + ... (28)
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Matrix Elements

Brillouin’s theorem:
ΨHF ĤΨS = 0

Slater-Condon rules:
if two Slater determinants differ more by two spacial
molecular orbitals, then the matrix element is equal to zero
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Structure of the CI matrix

CI matrix ΦHF ΦS ΦD ΦT ΦQ Φ5 ...
ΦHF EHF 0 0 0 0 0
ΦS 0 0 0 0
ΦD 0 0
ΦT 0 0
ΦQ 0 0
Φ5 0 0 0
... 0 0 0 0
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Multiconfigurational SCF

for cases with low-lying excited states and bond-breaking
two levels of optimization:

molecular orbitals
configurational state functions

CASSCF: Complete Active Space SCF
full CI for only selected orbitals

RASSCF: Restricted Active Space SCF
selected (orbital) regions for:

smallest at full CI
larger at CISDT
largest at CISD ...
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Coupled Cluster (CC) methods

NOT variational methods
cluster operators in form of exponential functions
solves size-inconsistency of the truncated CI
widely used
CCSD(T): “The Gold Standard” of modern computations
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Operators in Coupled Cluster

single-particle excitation operator:

T̂1Φ0 =

b∑
a=n+1

n∑
i=1

taiΦ
a
i (29)

two-particle excitation operator:

T̂2Φ0 =

b∑
b=a+1

b−1∑
a=n+1

n∑
j=i+1

n−1∑
i=1

tabij Φab
ij (30)

where
i, j - filled molecular orbitals
a, b - virtual molecular orbitals
t - probability of excitation
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General Coupled Clusters

“two-electron interactions” are dominant
three or more electrons can interact simultaneously
generalized excitation operator:

τ̂µ = τ̂abc...ijk... = φ∗aφiφ
∗
bφjφ

∗
cφk... (31)

generalized CC wavefunction:

ΦCC =

[∏
µ

(1 + tµτ̂µ)

]
ΦHF = eT̂ΦHF (32)

where
T̂ =

∑
µ

tµτ̂µ (33)
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Truncated Coupled Cluster Methods

truncation of excitation operator T̂ defines the method:

T̂ = T̂1 + T̂2 + T̂3 + T̂4 + ...

CCS T̂1
CCSD T̂1 + T̂2
CCSDT T̂1 + T̂2 + T̂3
CCSDTQ T̂1 + T̂2 + T̂3 + T̂4

...

NOTE: Truncated CC Methods are still Size Consistent as
opposed to Truncated CIs
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Energy in Coupled Cluster Methods

Schrödinger equation:

ĤeT̂ΦHF = EeT̂ΦHF

ΦHF Ĥe
T̂ΦHF = EΦHF |eT̂ΦHF

power series expansion:

eT̂ΦHF = (1 + T̂
1 + T̂ 2

2 + T̂ 3

6 ...)ΦHF , then
ΦHF |eT̂ΦHF = ΦHF |ΦHF + ΦHF |T̂ΦHF + 1

2ΦHF |T̂ 2ΦHF + ...

all but first term are equal to zero (orthogonal
wavefunctions), thus

ΦHF Ĥe
T̂ΦHF = E (34)
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(II) Electron Density Based Method
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Density Functional Theory (DFT)

reversed workflow from ab initio methods

potential of particles calculated from electron density

energy as a functional of electron density (E = F [ρ(~r)])

electron density is a function of 3 spatial coordinates only

ρ(r)      Vext       H      Ψ, Ε, ...

External 
potential for e-

{̂Unique properties
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Kohn-Sham (KS) Approach

e1

e2

e3

Real system of 
interacting electrons

e1

e2
e3

Sham potential
No interaction 
between electrons

ρ(r)             =             ρ(r)

E = F [ρ(~r)]
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Energy Terms in DFT

E = F [ρ(~r)]

E = V̂ (ρ) + T̂ (ρ) + Ĵ(ρ) + Êxc(ρ)

T̂ (ρ) Kinetic part from Kohn-Sham orbitals

Êxc(ρ) Exchange-Correlation part most difficult

NOTE: Flavors of DFT lies on the treatment of the
Exchange-Correlation part
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DFT Types

LDA
Local Density Approximation
crudest model
space is divided into bins, where the electron density is
calculated

GGA Functional
Generalized Gradient Approximation
apart from the local density, the gradient of ρ is calculated
recovers some nonlocal interactions
examples: BLYP, PW91, PBE
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DFT Types

Hybrid Functionals
including the exchange from HF calculation
HF includes the exchange analytically
B3LYP:
E = 0.2EHFexchange

+ 0.8ESlater + 0.72EB88 +
0.19EVWN3 + 0.81ELY P

PBE0 - PBE with 25% of exact exchange

Meta-GGA Functionals
include higher-order derivatives of ρ
M05 and M06L, TPSS
Meta-Hybrid functionals include exact exchange from HF
M06-2X, TPSSH
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Time Dependent DFT (TDDFT)

used for resolving response properties (UV/VIS...)
solving the time-dependent Schrödinger equation:

Ĥ(t)Ψ(t) = i
∂Ψ(t)

∂t
(35)

where the Hamiltonian is a sum of kinetic, potential energy
operators and, operator of external potential

(Prepared by Radek Marek Research Group)

Lesson 04 - Model Chemistries 39



Advantages and Disadvantages of DFT

Advantages
+ provides treatment for Electronic Correlation
+ computational cheaper than Post Hartree-Fock methods
thus practical for large systems
+ plenty of flavors to chose from in dealing with various
molecular systems

Disadvantages
- basically the ’electron’ literally see each other as a
consequence of (J-K) not canceling each other as opposed
to HF (Self Interaction Error)
- fixed and not flexible, there’s no systematic way to improve
results such as tweaking basis sets and changing
parameters
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END
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