CG920 Genomics

Lesson 11

Systems Biology

Jan Hejátko

Functional Genomics and Proteomics of Plants,

CEITEC - Central European Institute of Technology And National Centre for Bimolecular Research, Faculty of Science,

MUNI SCI

Masaryk University, Brno hejatko@sci.muni.cz, www.ceitec.eu

Literature

- Literature sources for Chapter 12:
 - Wilt, F.H., and Hake, S. (2004). Principles of Developmental Biology. (New York ; London: W. W. Norton)
 - Eden, E., Navon, R., Steinfeld, I., Lipson, D., and Yakhini, Z. (2009). GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48.
 - The Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815.
 - Benitez, M. and Hejatko, J. Dynamics of cell-fate determination and patterning in the vascular bundles of Arabidopsis thaliana (submitted)
 - de Luis Balaguer MA, Fisher AP, Clark NM, Fernandez-Espinosa MG, Moller BK, Weijers D, Lohmann JU, Williams C, Lorenzo O, Sozzani R. 2017. Predicting gene regulatory networks by combining spatial and temporal gene expression data in Arabidopsis root stem cells. Proc Natl Acad Sci U S A 114(36): E7632-E7640.

Outline

- Definition of Systems Biology
- Tools
 - Gene Ontology Analysis
 - Bayesian Networks
 - Molecular/Gene Regulatory Networks Modeling
 - Inferring Gene Regulatory Networks from Large Omics Datasets

Definition

Systems biology is the computational and mathematical analysis and modeling of complex biological systems. It is a biology-based interdisciplinary field of study that focuses on complex interactions within biological systems, using a holistic approach (holism instead of the more traditional reductionism) to biological research (Wikipedia).

Definition

Systems biology is the study of biological systems whose behaviour cannot be reduced to the linear sum of their parts' functions. Systems biology does not necessarily involve large numbers of components or vast datasets, as in genomics or connectomics, but often requires quantitative modelling methods borrowed from physics (Nature).

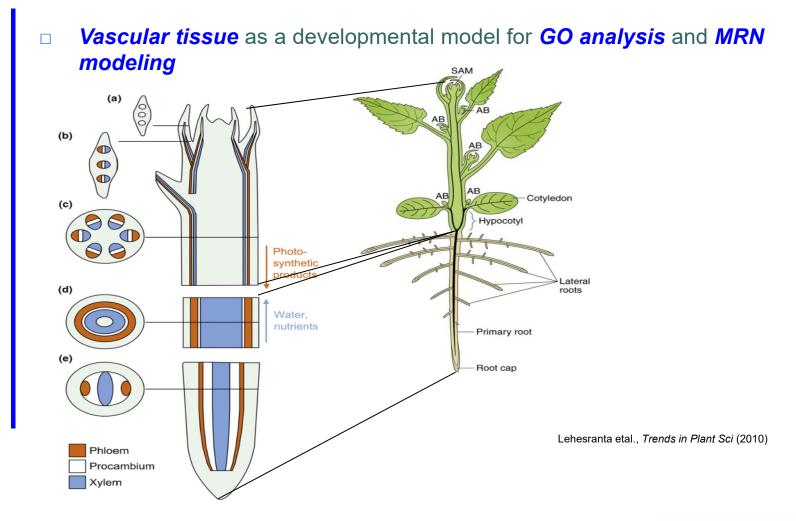
Definition

Nice explanatory video by Dr. Nathan Price,

associate director of the Institute for Systems Biology at <u>https://www.youtube.com/watch?v=OrXRI_8UFHU</u>.

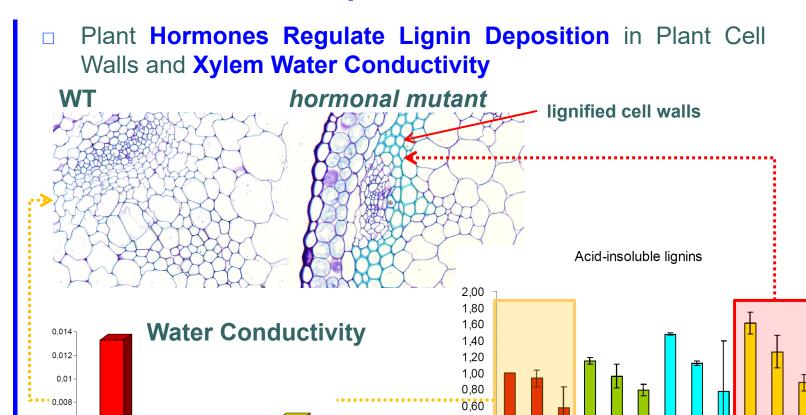
Outline

- Definition of Systems Biology
- Tools
 - Gene Ontology analysis


Results of –omics Studies vs Biologically Relevant Conclusions

Results of -omics studies represent huge amount of data, e.g. genes with differential expression. But how to get any biologically relevant conclusions out of it?

Ddii et al., unpublished


gene	locus	sample_1	sample_2	status	value_1	value_2	log2(fold_change)				significant
AT1G07795	1:2414285-2414967	wт	мт	ок	0	1 1804	1.79769e+308	1.79769e+3 08	6.88885e-05	0,00039180	yes
				on	Ĵ	1,1001		1.79769e+3		4.67708e-	,
HRS1	1:4556891-4558708	WT	MT	ОК	0	0,696583	1.79769e+308		6.61994e-06		yes
ATMLO14	1:9227472-9232296	wт	МТ	ок	0	0.514609	1.79769e+308	1.79769e+3 08	9.74219e-05	0,00053505	yes
				on	Ĵ	0,011000		1.79769e+3		3.50131e-	,
NRT1.6	1:9400663-9403789	WT	MT	OK	0	0,877865	1.79769e+308		3.2692e-08	07	yes
AT1G27570	1:9575425-9582376	wт	мт	ок	0	2.0829	1.79769e+308	1.79769e+3 08	9.76039e-06	6.647e-05	ves
						,		1.79769e+3		9.84992e-	,
AT1G60095	1:22159735-22162419	WT	MT	ОК	0	0,688588	1.79769e+308	08 1.79769e+3	9.95901e-08	07	yes
AT1G03020	1:698206-698515	WT	МТ	ок	0	1,78859	1.79769e+308	08		0,0277958	yes
								1.79769e+3			
AT1G13609	1:4662720-4663471	WI	MT	ОК	0	3,55814	1.79769e+308	08 1.79769e+3		0,00108079	yes
AT1G21550	1:7553100-7553876	WТ	МТ	ок	0	0,562868	1.79769e+308	08		0,00471497	yes
474000400	4 7000000 7000000		MT		0	0.047054	4 70700 - 1000	1.79769e+3		1.91089e-	
AT1G22120	1:7806308-7809632	VVI	МТ	ОК	0	0,617354	1.79769e+308	08 1.79769e+3	2.48392e-06	0,00028514	yes
AT1G31370	1:11238297-11239363	WТ	МТ	ОК	0	1,46254	1.79769e+308	08	4.83523e-05	3	yes
APUM10	1:13253397-13255570	wт	мт	ок	0	0 581031	1.79769e+308	1.79769e+3 08	7.87855e-06	5.46603e-	yes
	1.1020007-1020070		IVII	OR	0	0,001001	1.7370301300	1.79769e+3		0,00037473	
AT1G48700	1:18010728-18012871	WT	MT	OK	0	0,556525	1.79769e+308		6.53917e-05	6	yes
AT1G59077	1:21746209-21833195	wт	мт	ок	0	138.886	1.79769e+308	1.79769e+3 08		0,00496816	ves
						,		1.79769e+3		-,	,
AT1G60050	1:22121549-22123702	WT	MT	OK	0	0,370087	1.79769e+308	08	0,00117953	0,0048001	yes
AT4G15242	4:8705786-8706997	WТ	MT	OK	0,00930712	17,9056	10,9098	-4,40523	1.05673e-05	7.13983e-05	yes
475000054	5.10100071 10500 100	MAT	MT		0.0400075	50.0007	40.0040	0.0440			0
AT5G33251 AT4G12520	5:12499071-12500433 4:7421055-7421738		MT MT	OK OK	0,0498375 0,0195111	52,2837 15,8516	10,0349 9,66612	-9,8119 -3 90043	0 9.60217e-05		0 yes 4 ves
	4.14210001421100			0.1	0,0100111	.0,0010	0,00012	0,00040	0.002.10.00	0,00002000	.,
AT1G60020	1:22100651-22105276		MT	OK	0,0118377	7,18823	9,24611		6.19504e-14		
AT5G15360	5:4987235-4989182	VVI	MT	OK	0,0988273	56,4834	9,1587	-10,4392	0		0 yes

Plant Vascular Tissue Development

Hormonal Control Over Vascular Tissue Development

0,40

0,20

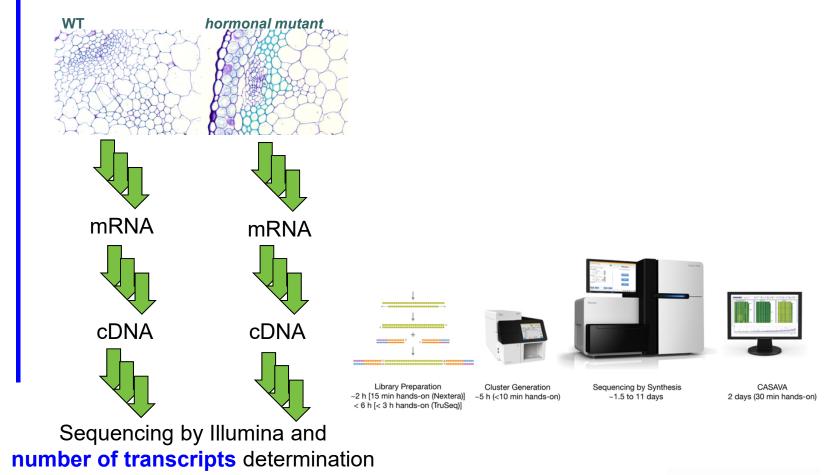
0.00

WT

mutant

0.006

0.004

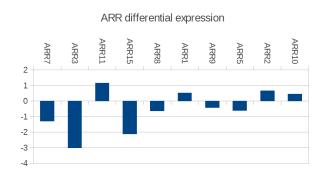

0,002

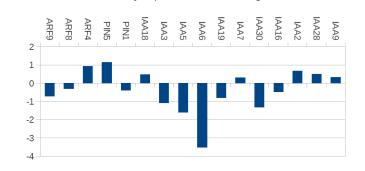
WT

hormonal mutants

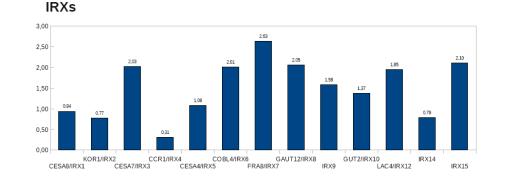
Hormonal Control Over Vascular Tissue Development

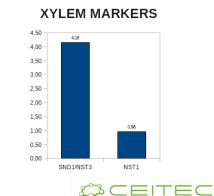
Transcriptional profiling via RNA sequencing


Results of –omics Studies vs Biologically Relevant Conclusions

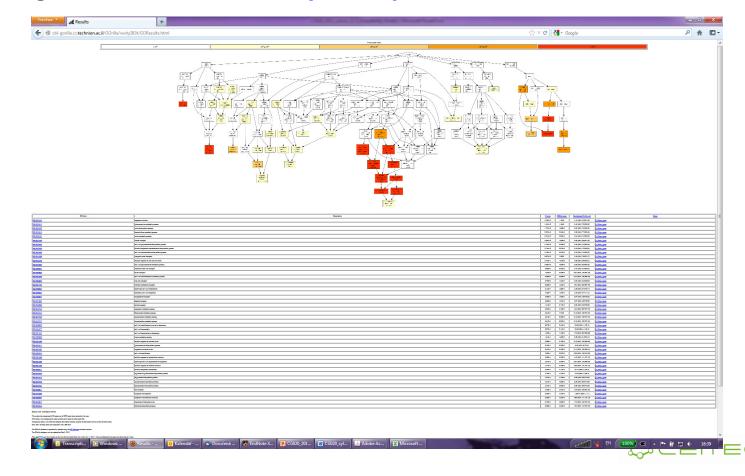

Transcriptional profiling yielded more then 9K differentially regulated genes...

Ddii et al., unpublished

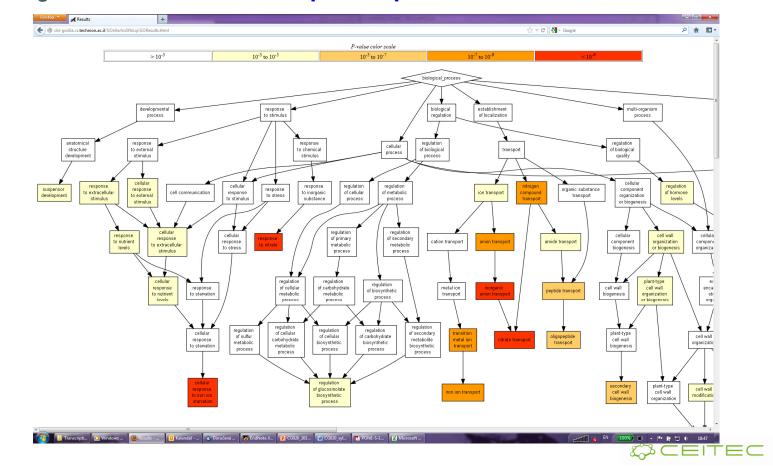

gene	locus s	ample_1	sample_2	status	value_1	value_2	log2(fold_change)	test_stat	p_value	q_value	significa
		_						1.79769e+3		0,00039180	
AT1G07795	1:2414285-2414967 W	VI	MT	ОК	Ű	1,1804	1.79769e+308		6.88885e-05		yes
HRS1	1:4556891-4558708 W	л	мт	ок	0	0 606583	1.79769e+308	1.79769e+3 08	6.61994e-06	4.67708e-	yes
	1.4550091-4550700 1	V I		OK	U	0,090303	1.7970901300	1.79769e+3		0,00053505	
ATMLO14	1:9227472-9232296 W	νT	мт	ок	0	0,514609	1.79769e+308		9.74219e-05		yes
								1.79769e+3		3.50131e-	
NRT1.6	1:9400663-9403789 W	VT	МТ	ОК	0	0,877865	1.79769e+308		3.2692e-08	07	yes
AT1G27570	1:9575425-9582376 W	л	мт	ок	C	2 0820	1.79769e+308	1.79769e+3 08	9.76039e-06	6 6470 05	VOS
A1102/3/0	1.5575425-5562570	V I		UK	U	2,0029	1.7970901000	1.79769e+3		9.84992e-	yes
AT1G60095	1:22159735-22162419 W	νT	МТ	ок	0	0,688588	1.79769e+308		9.95901e-08		yes
								1.79769e+3			
AT1G03020	1:698206-698515 W	VT	MT	ОК	C	1,78859	1.79769e+308	08	0,00913915	0,0277958	yes
AT1G13609	1:4662720-4663471 W	л	мт	ок	0	3.55814	1.79769e+308	1.79769e+3 08	0,00021683	0 00108079	VAS
	1.4002720-4003471	• •		OR	Ū	0,00014	1.7370301000	1.79769e+3	0,00021000	0,00100073	yc3
AT1G21550	1:7553100-7553876 W	νT	МТ	ок	0	0,562868	1.79769e+308	08	0,00115582	0,00471497	yes
								1.79769e+3		1.91089e-	
AT1G22120	1:7806308-7809632 W	VT	МТ	ОК	C	0,617354	1.79769e+308		2.48392e-06		yes
AT1G31370	1:11238297-11239363 W	/T	мт	ок	0	1 46254	1.79769e+308	1.79769e+3 08	4.83523e-05	0,00028514	yes
	1.11230237-11233003 4	* 1		OI	Ū	1,40204	1.7370301000	1.79769e+3		5.46603e-	yc3
APUM10	1:13253397-13255570 W	νT	MT	ОК	0	0,581031	1.79769e+308		7.87855e-06		yes
		_						1.79769e+3		0,00037473	
AT1G48700	1:18010728-18012871 W	νT	MT	ОК	C	0,556525	1.79769e+308		6.53917e-05	6	yes
AT1G59077	1:21746209-21833195 W	л	мт	ок	0	138 886	1.79769e+308	1.79769e+3 08	0,00122789	0 00496816	ves
	1.21140200 21000100 1			OIX	Ū	100,000	1.101000.000	1.79769e+3		0,00400010	yee
AT1G60050	1:22121549-22123702 W	/T	МТ	ОК	0	0,370087	1.79769e+308			0,0048001	yes
AT4G15242	4:8705786-8706997 W	· (T	мт	ОК	0.00000740	17.9056	40,0000	4 40500	4 05070 - 05	7 40000 - 05	
A14G15242	4.8705786-8706997	VI		UK	0,00930712	17,9050	10,9098	-4,40523	1.05673e-05	7.139636-05	yes
AT5G33251	5:12499071-12500433 W	νT	мт	ОК	0,0498375	52,2837	10,0349	-9,8119	0		0 yes
AT4G12520	4:7421055-7421738 W			OK	0,0195111				9.60217e-05		-
AT1G60020	1:22100651-22105276 W			OK	0,0118377		9,24611		6.19504e-14		
AT5G15360	5:4987235-4989182 W	VI	MT	OK	0,0988273	56,4834	9,1587	-10,4392	0		0 yes


One of the possible approaches is to study *gene ontology*, i.e. previously demonstrated **association** of genes to **biological** processes

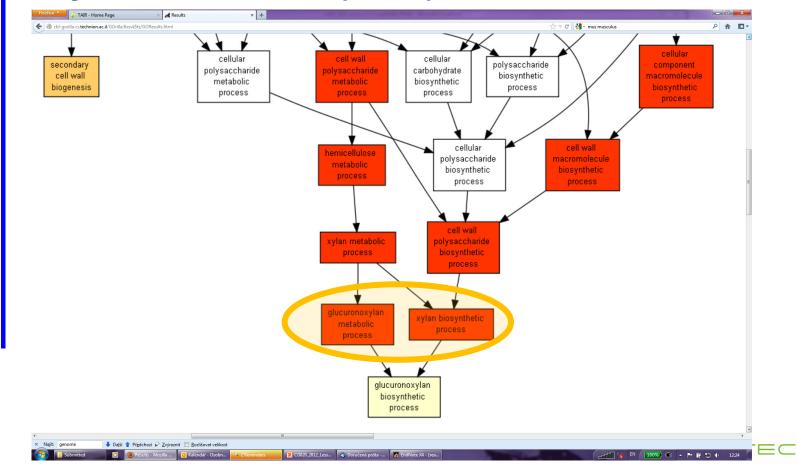
Differentially expressed IAA-related genes


Ddii et al., *unpublished*

 Several tools allow statistical evaluation of enrichment for genes associated with specific processes


Eden et al., BMC Biinformatics (2009)

) 🕲 chi-gorilla cotechnion acil		RILLA naLysis and visuaLizAtion tool	∱ ∀ C <mark>अ</mark> - Google		<u> </u>
Gen					
Gen					
Ger	ne Ontology en RI chment a	naLysis and visuaLizAtion tool			
	R				
Illa is a tool for identifying and visualizing enriched GO terms in ranked lists of genes. be run in one of two modes: Searching for enriched GO terms that appear densely at the top of a ranked list of genes or					
Searching for enriched GO terms in a target list of genes compared to a background list of genes.					
urther details see <u>References</u> .					
Step 1: Choose organism Arabidopsis thaliana Step 2: Choose running mode Step 3: Paste a ranked list of genes To To vo unranked lists of genes (target and background lists) Step 3: Paste a ranked list of gene/protein names Names should be separated by an <enter>. The preferred format is gene anymoted format are gene and protent REGeq. Uniprot. Unigene and Ensembl. Use WebGestalt for conversion from other identifier formats. Or upload a file: D:Results2012/Mariane Prochazet.</enter>					
Step 4: Choose an ontology					
🚺 Transcripti 💽 Windows 🔞 GOnila - a 👩 Kalendář 🗳 Doručená 😿 EndNote X 👂 CG02	20 201 W CC020 and Latertained	kc Kicrosoft		👩 EN (100%) 📧 🔺 🏴 (¥ †⊐ ♦ 18:41


Several tools allow statistical evaluation of enrichment for genes associated with specific processes

Several tools allow statistical evaluation of enrichment for genes associated with specific processes

 Several tools allow statistical evaluation of enrichment for genes associated with specific processes

 Several tools allow statistical evaluation of enrichment for genes associated with specific processes

Coll-gorilla.cs.technion.ac.il/GOrilla/kn5fh1qi/GOResults	+ .html#0045492		☆ र ८] 🖁	▼ Google	° A ID-
glucuronoxylan metabolic process	1.01E-12	1.6E-9	3.43 (6331,72,999,39)	[+] Show genes	
xylan biosynthetic process	1.77E-12	1.86E-9	3.39 (6331,73,999,39)	[+] Show genes	
hemicellulose metabolic process	2.97E-12	2.34E-9	3.29 (6331,77,999,40)	[+] Show genes	E
xylan metabolic process	3.21E-12	2.03E-9	3.34 (6331,74,999,39)	[+] Show genes	
nitrate transport	3.64E-12	1.92E-9	3.92 (6331,58,891,32)	[+] Show genes	
cell wall polysaccharide biosynthetic process	5.74E-12	2.59E-9	3.30 (6331,75,999,39)	[+] Show genes	
cellular component macromolecule biosynthetic process	5.74E-12	2.27E-9	3.30 (6331,75,999,39)	[+] Show genes	

Several tools allow statistical evaluation of enrichment for genes associated with specific processes

Cbl-gorilla.cs. technion.ac.il /GOrilla/kn5fh1qi/GOResults.html#0045492				☆ ▼ C Google	<u></u>
Description	P-value	FDR q-value	Enrichment (N, B, n, b)	Genes	
response to nitrate	4.76E-13	1.5E-9	4.13 (6331,55,891,32)	[+] Show genes	
glucuronoxylan metabolic process	1.01E-12	1.6E-9	3.43 (6331,72,999,39)	[+] Show genes	
xylan biosynthetic process	1.77E-12	1.86E-9	3.39 (6331,73,999,39)	[-] Hide genes GUT2 - putative glycosyltransferase GUT2 - putative glycosyltransferase GUT2 - putative glycosyltransferase AT4022460 - bifunctional inhibitor/lipid-transfer protein/seed storage 2s albumin-like protein AT4022460 - bifunctional inhibitor/lipid-transfer AT4022460 - bifunctional inhibitor/lipid-transfer AT4022460 - bifunctional inhibitor/lipid-transfer AT4022460 - bifunctional inhibitor/lipid-transfer AT407000 - periot julice (EAA4 - cellulose synthase a catalytic subunit 4 [udp-forming] AT11008340 - rho gtpase activating protein 12 IRX6 - colora-like protein 2 IRX6 - colora-like protein 4 MYB63 - myb domain protein 63 POSB1 - Janat glycogenin-like starch initiation protein 1 AT5046340 - putative o-acetyltransferase AT5021710 - hypothetical protein AT1009440 - protein kmase family protein AT3056230 - tably protein for AT3056230 - bifby oction protein AT3056230 - bifby oction protein AG144 - protein agamous-like 44 IRX12 - laccase-4 NAC073 - ane domain containing protein 73 IRX3 - collulos synthase actalytic subunit 7 [udp-forming] AT4027435 - hypothetical protein MYB46 - transcription factor myb46 AT4027435 - hypothetical protein AT404 - protein factor myb46 AT402743 - hypothetical protein AT404 - bifbios protein actalytic subunit 7 [udp-forming] AT4027435 - hypothetical protein AT404 - transcription factor myb46 AT4072200 - mig-h2 finger protein al54 FRD3 - mate efflux family protein	
hamigallulasa matahalia nyaasaa	2 07E 12	2 24E 0	2 20 (6221 77 000 40)	[1] Charry games	

Outline

- **Definition of Systems Biology**
- Tools
 - Gene Ontology analysisBayesian Networks

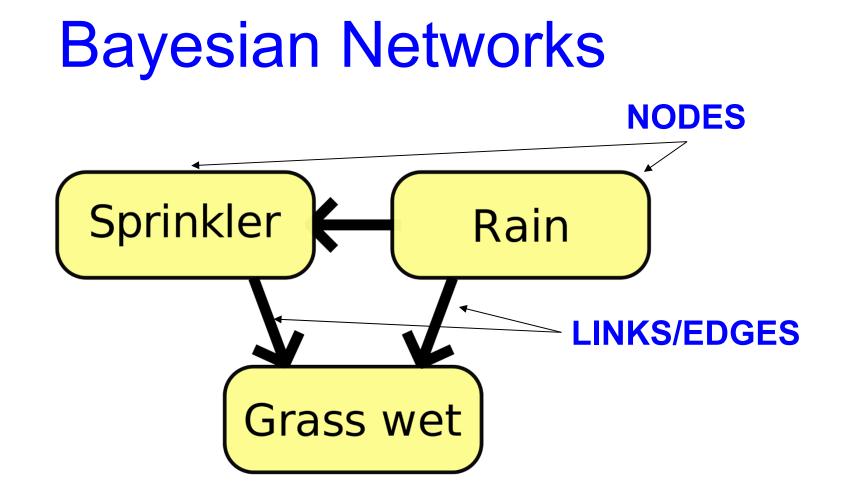
Bayesian Networks

- What are Bayesian networks?
 - Probabilistic Graphical Model that can be used to build models from data and/or expert opinion

Bayesian Networks

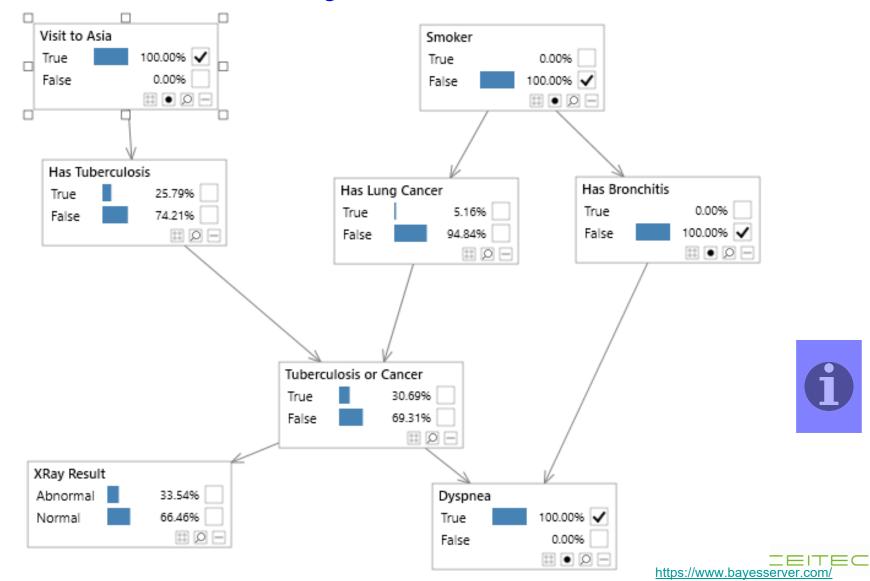
What are **Bayesian Networks**?

- Probabilistic Graphical Model that can be used to build models from data and/or expert opinion
- can be used for a wide range of tasks including prediction, anomaly detection, diagnostics, automated insight, reasoning, time series prediction and decision making under uncertainty

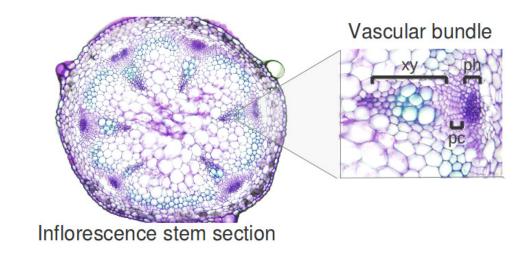

NODES

each node represents a variable such as someone's height, age or gender.
 A variable might be discrete, such as Gender = {Female, Male} or might be continuous such as someone's age

LINKS


added between nodes to indicate that one node directly influences the other

Asia Bayesian Network

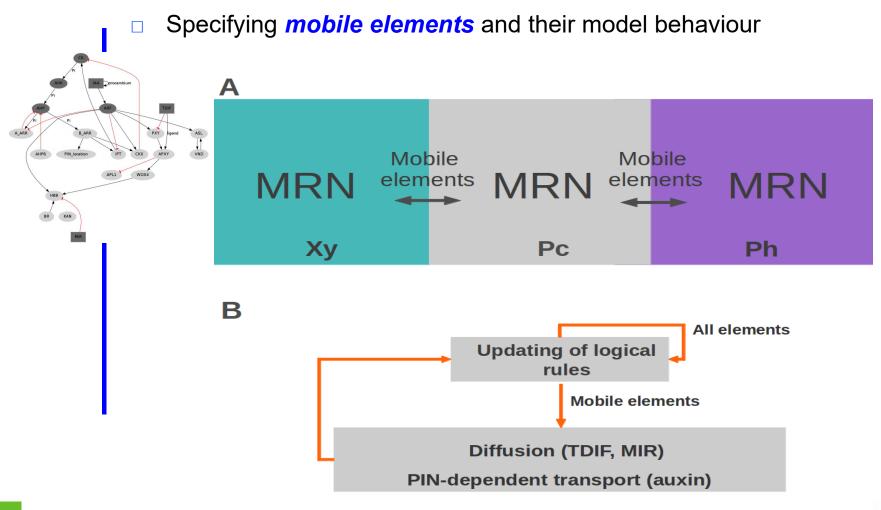

Outline

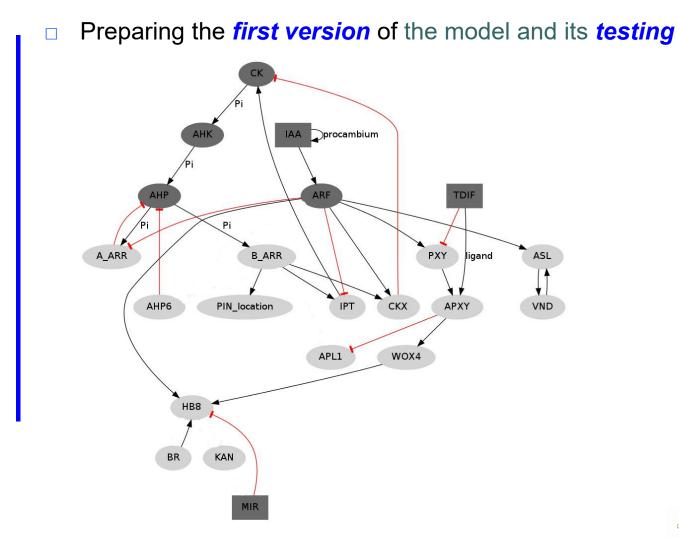
- **Definition of Systems Biology**
- Tools
- Gene Ontology analysisBayesian Networks

 - Molecular/Gene Regulatory Networks Modeling

□ Vascular tissue as a developmental model for MRN modeling

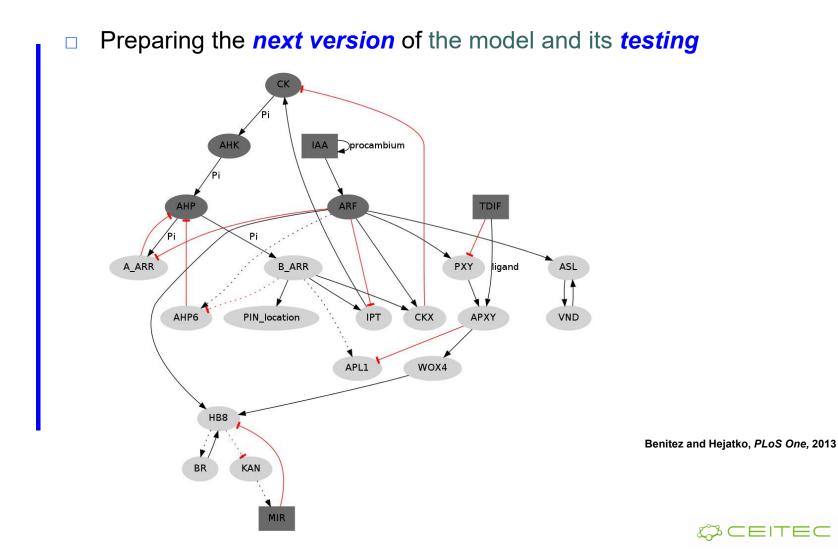
Benitez and Hejatko, PLoS One, 2013

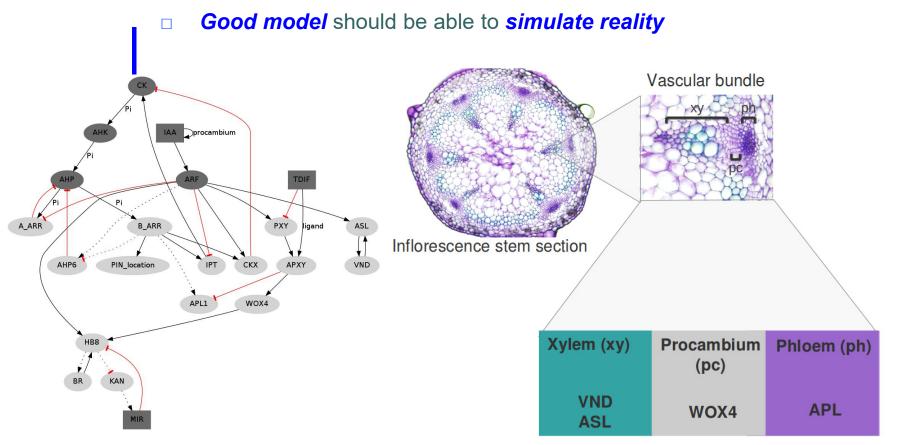

C	Literature database	search	for	published	data	and	creating	small
	Interaction	Evidence					References	
	A-ARRs – CK signaling	Double and increased se	-	order type-AAF ty to CK.	RR mutan	its show	[27]	
		CK respons	e are c	A-type ARR ger consistent with p enes in CK sign	artially re		[27]	
		A-type ARR	s decre	eases B-type AR	RR6-LUC.		[13]	
				ontexts, howeve ects antagonistic	-		[27]	
	AHP6 – AHP	ahp6 partial CK receptor	•	vers the mutant	phenotyp	be of the	[9]	
	Benitez and Hejatko, <i>PLoS One</i>	shown that, unable to ac AHP6 is abl	unlike cept a e to inf	hosphotransfer s the AHPs, nativ phosphoryl grou nibit phosphotra	e AHP6 w up. Neve	vas ertheless,	[9]	
	201102 and Hojako, 7 200 one		1.0.					


□ Formulating *logical rules* defining the *model dynamics*

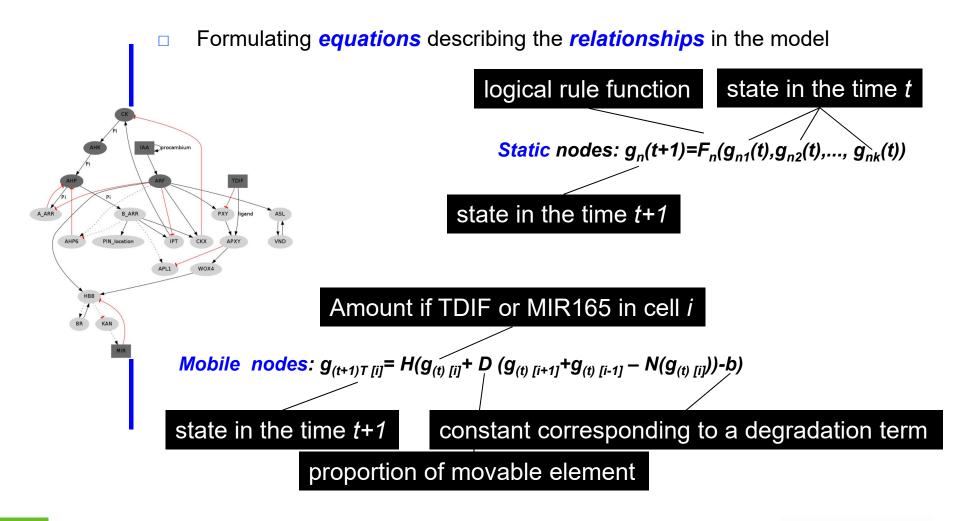
Network node	Dynamical rule
СК	2 If ipt=1 and ckx=0 1 If ipt=1 and ckx=1 0 else
СКХ	1 If barr>0 or arf=2 0 else
AHKs	ahk=ck
AHPs	2 If ahk=2 and ahp6=0 and aarr=0 1 If ahk=2 and (ahp6+aarr<2) 1 If ahk=1 and ahp6<1 0 else
B-Type ARRs	1 If ahp>0 0 else
A-Type ARRs	1 If arf<2 and ahp>0 0 else

Benitez and Hejatko, PLoS One, 2013

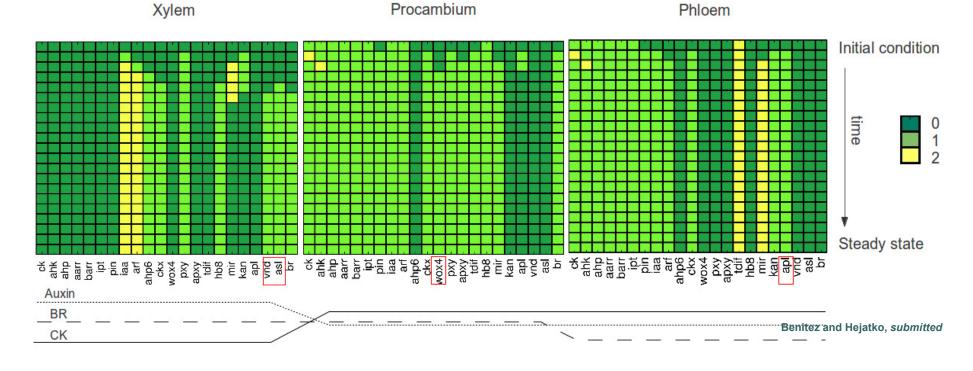


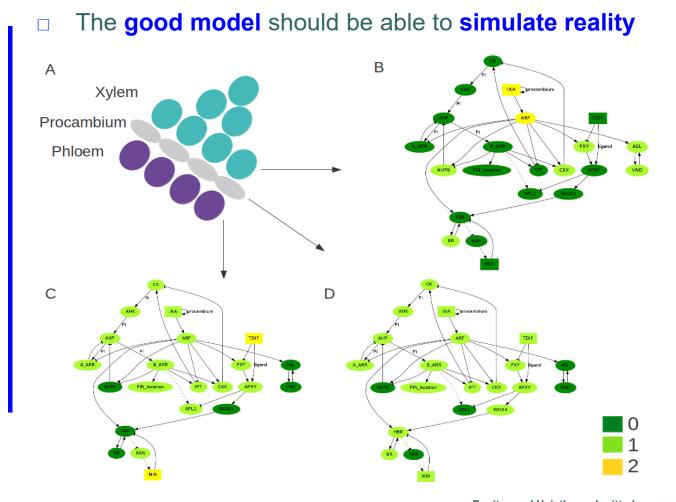


Specifying of missing interactions via *informed predictions*


Interaction	Evidence	References
$CK \rightarrow PIN7$ radial localization	Predicted interaction (could be direct or indirect)	
	Informed by the following data:	
	During the specification of root vascular cells in Arabidopsis thaliana, CK regulates the radial localization of PIN7.	[18]
	Expression of PIN7:GFP and PIN7::GUS is upregulated by CK with no significant influence of ethylene.	[18,20]
	In the root, CK signaling is required for the CK regulation of PIN1, PIN3, and PIN7. Their expression is altered in wol, cre1, ahk3 and ahp6 mutants.	[19]
$CK \rightarrow APL$	Predicted interaction (could be direct or indirect)	
	Consistent with the fact that APL overexpression prevents or delays xylem cell differentiation, as does CKs.	[21]
		(TAIR,
	Partially supported by microarray data and phloem-specific expression patterns of CK response factors.	ExpressionSet: 1005823559, [22])

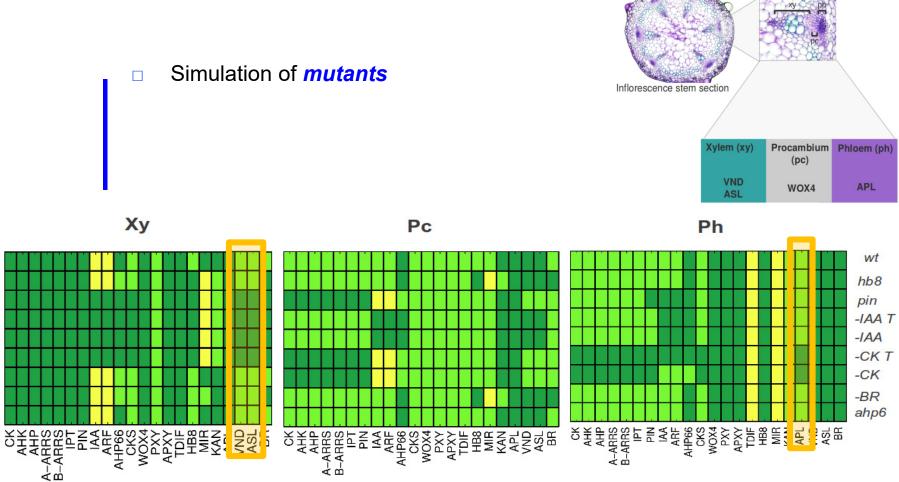
Benitez and Hejatko, PLoS One, 2013





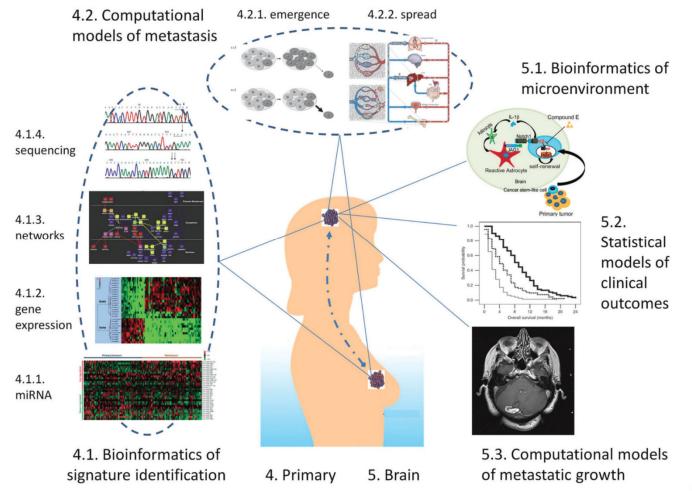
Good model should be able to simulate reality

Static nodes: $g_n(t+1) = F_n(g_{n1}(t), g_{n2}(t), ..., g_{nk}(t))$ Mobile nodes: $g_{(t+1)T[i]} = H(g_{(t)[i]} + D(g_{(t)[i+1]} + g_{(t)[i-1]} - N(g_{(t)[i]}))-b)$



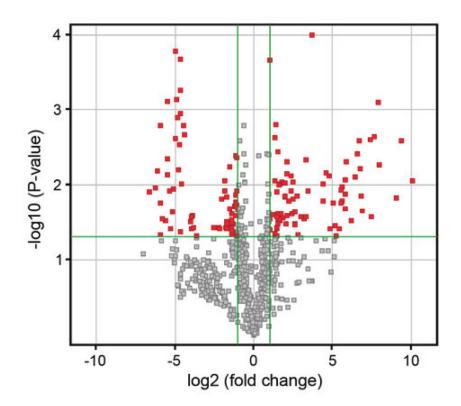
Benitez and Hejatko, submitted

Molecular Regulatory Networks Modeling

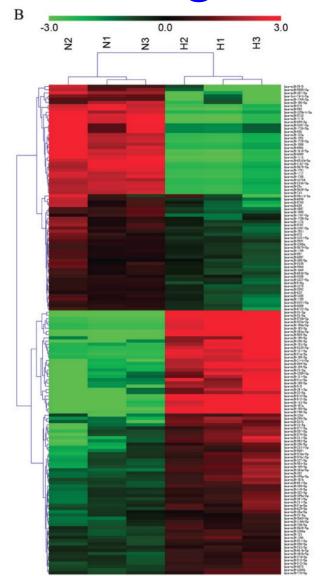

Vascular bundle

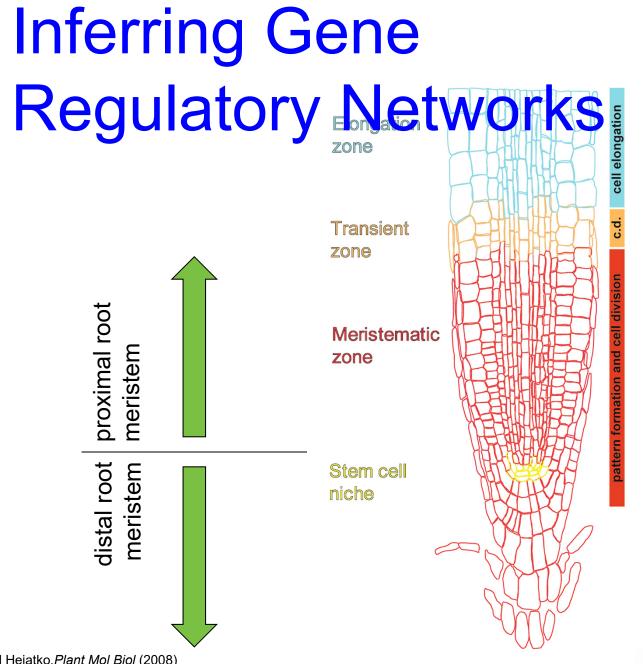
Outline

- Definition of Systems Biology
- Tools
 - Gene Ontology analysis
 - Bayesian Networks
 - Molecular/Gene Regulatory Networks Modeling
 - Inferring Gene Regulatory Networks from Large Omics Datasets

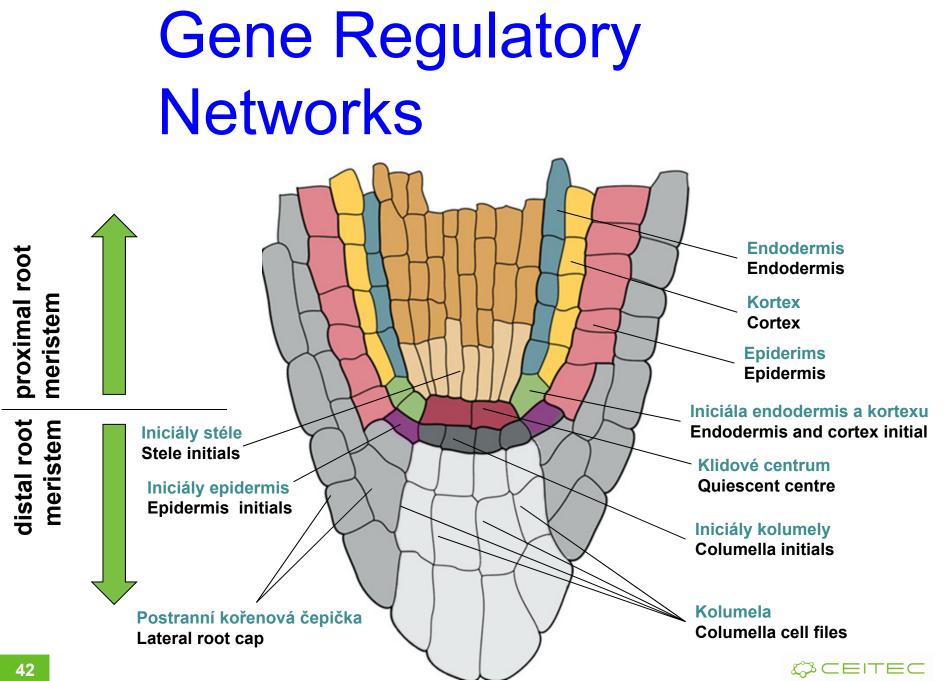


Systems Biology in Cancer Research

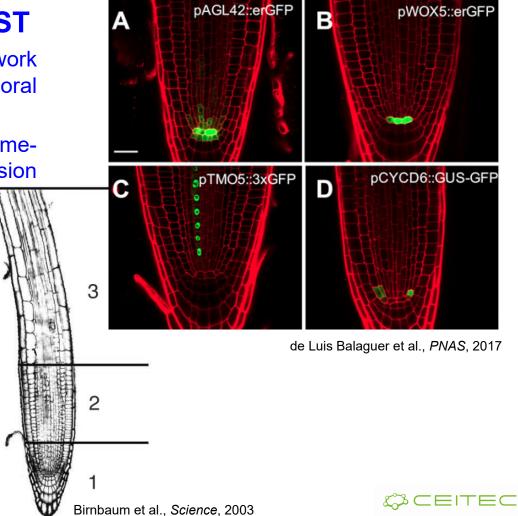


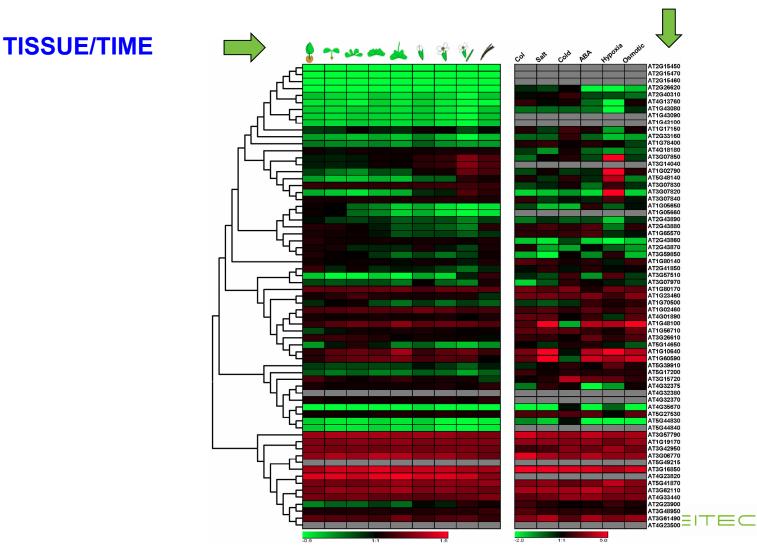


miRNA/mRNA Profiling

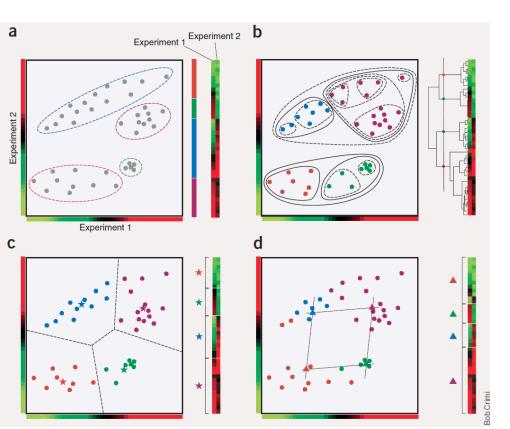


Guo et al., Mol Med Reports, 2017

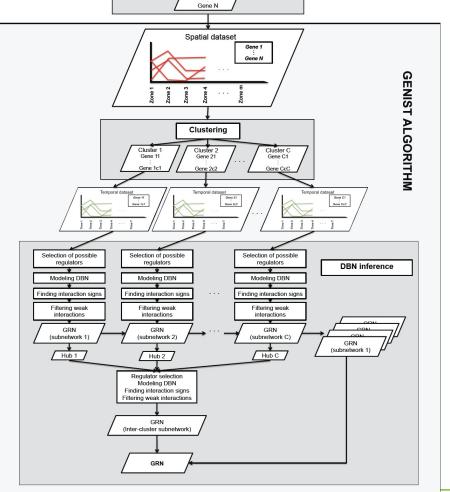




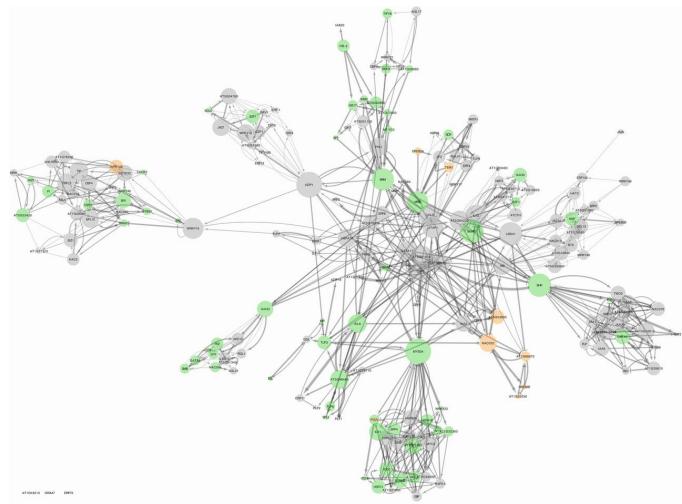
Inferring GRNs via GENIST

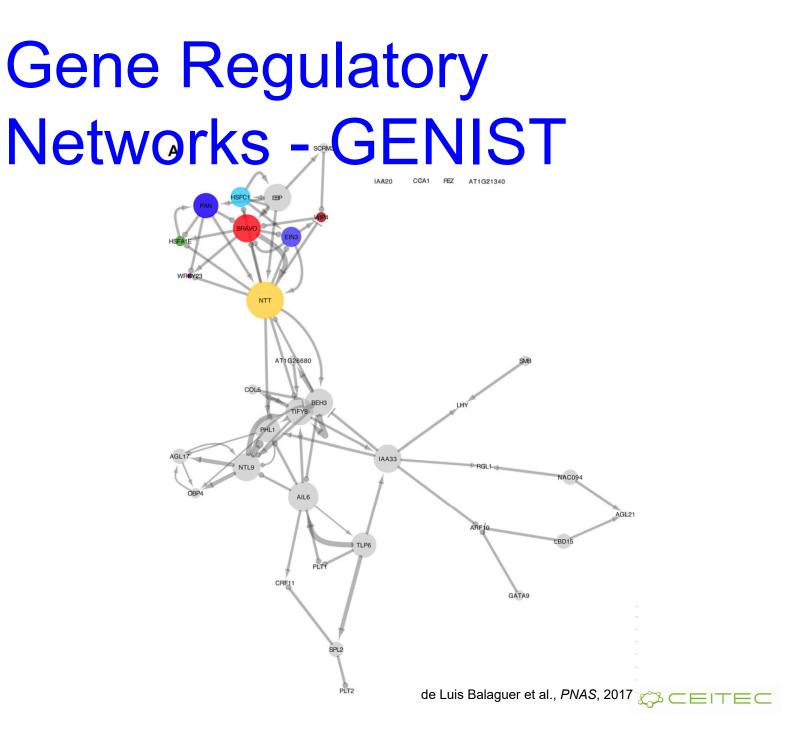

- GEne regulatory Network Inference from SpatioTemporal data algorithm
- Combining spatial- and timespecific gene expression profiles

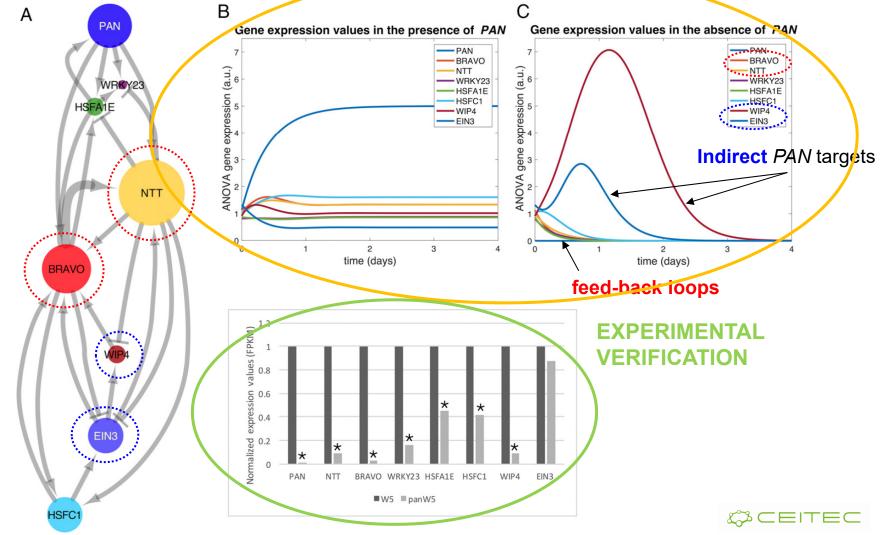
Combining Large Omics Datasets GENES


- Inferring GRNs via GENIST
 - Clustering of genes
 - Expression similarity under various conditions/genetic backgrounds, time points, ...
 - Inferring intra-cluster connections
 - Selection of potential regulators and coregulators
 - Based on the time correlation in the change of expression and/or user specification
 - Dynamic Bayesian Network modeling

Haeseleer, Computational Biology, 2005




- Inferring GRNs via GENIST
 - Clustering of genes
 - Expression similarity under various conditions/genetic backgrounds, time points, ...
 - Inferring intra-cluster connections
 - Selection of potential regulators and coregulators
 - Based on the time correlation in the change of expression and/or user specification
 - Dynamic Bayesian Network modeling


Gono

de Luis Balaguer et al., PNAS, 2017

Gene Regulatory Networks - GENIST MODEL PREDICTION

49

Summary

- Definition of Systems Biology
- Tools
 - Gene Ontology analysis
 - Bayesian Networks
 - Molecular/Gene Regulatory Networks Modeling
 - Inferring Gene Regulatory Networks from Large Omics Datasets

Discussion

