(teorie a praxe) Vibrační spektroskopie

D. Hemzal

M**UNI** PŘÍRODOVĚDECKÁ FAKULTA

Infračervená absorpční spektroskopie (v, dipólový moment μ)

Ramanská spektroskopie (Δv , polarizovatlenost α)

F3250 Moderní témata ve fyzice kondenzovaných látek, podzim 2021

Vibrace CO2

- počet a typ vibrací je dán symetrií molekuly
- vibrační frekvence jsou dány vlastními hodnotami dynamické matice v okolí rovnovážné polohy

Vibrational mode	Molecular structure	IR and Raman activity					
Equilibrium structure		No activity at equilibrium position					
Symmetrical stretch		$\partial \mu / \partial Q = 0$ IR inactive $\partial \alpha / \partial Q \neq 0$ Raman active 1388 cm ⁻¹					
Asymmetrical stretch		$\partial \mu / \partial Q \neq 0$ IR active $\partial \alpha / \partial Q = 0$ Raman inactive 2349 cm ⁻¹					
Bending	+	$\partial \mu / \partial Q \neq 0$ IR active $\partial \alpha / \partial Q = 0$ Raman inactive 667 cm^{-1}					

nepružný rozptyl světla (Smekal 1923) energie fotonů zpravidla předána látce

Raman, Krishnan 1928 (Nobelova cena 1930), nezávisle Landsberg, Mandelstam 1928 rubínový laser (Maiman 1960), předpovězeno Einstein 1917

- široce aplikovatelná spektroskopie (kapaliny, plyny, krystaly) s charakteristickými otisky materiálů
- reaguje na uspořádání zkoumané látky prostřednictvím interakce světla s rovnovážnými vibracemi jejích atomů
- velmi slabý jev (rozptýlí se asi jeden foton z milionu)
- nutnost precizní detekce rozptýlených fotonů (vlnová délka téměř nezměněna)

$$\Delta v [1/cm] = \frac{1}{\lambda_{\text{laser}}} - \frac{1}{\lambda}$$

raman renishaw, 50x, 514 nm, 10 mW, 1000 s 3e+06 Ser p Ser 2.5e+06 HO OH 2e+06 HO OH ΝH₂ OH NH_2 1.5e+06 1e+06 500000 0 200 400 600 800 1000 1200 1400 1600 1800 raman shift [1/cm]

vliv fosforylace serinu na ramanské spektrum

raman intensity [counts]

Ramanův rozptyl

dopadající elmag. vlna: $\vec{E} = \vec{E}_0 \cos \omega t$

odezva atomů: $u(t) = u_0 \cos \Omega t$

indukovaný elektrický dipólový moment : $\alpha = \alpha_0 + \alpha_1 u(t) + \alpha_2 u^2(t) + ...$

polarizovatelnost spojená s vibrací:

$$\vec{P} = \alpha \vec{E} \doteq \alpha_0 \vec{E}_0 \cos \omega t + \alpha_1 \vec{E}_0 u_0 \cos \omega t \cos \Omega t = \alpha_0 \vec{E}_0 \cos \omega t + \frac{1}{2} \alpha_1 \vec{E}_0 u_0 \left[\cos(\omega + \Omega) t + \cos(\omega - \Omega) t \right]$$

výběrová pravidla pro Ramanův rozptyl prvního řádu: $\omega = \omega' \pm \Omega$ $k = k' \pm K$

Ramanův rozptyl

počet vibrací N-atomové molekuly: **3N-6** (-translace a rotace) (3N-5 pro lineární)

Počet vibrací v krystalu: **3N-3** (-translace) s N atomy v elementární buňce

E[meV] = 4.135 f[THz]

Ramanův rozptyl

počet vibrací N-atomové molekuly: **3N-6** (-translace a rotace) (3N-5 pro lineární)

Počet vibrací v krystalu: **3N-3** (-translace) s N atomy v elementární buňce

světlo: $\omega = c k$

(mikro) Ramanský spektrometr

© University of Bristol

Renishaw inVia, detail optické cesty

514 nm RazorEdge[®] ultrasteep long-pass edge filter, SEMROCK

- Laser Wavelength = 514.5 nm
- 97 cm⁻¹ transition
- T_{avg} > 93% 517.8 1160.5 nm

Custom sizing available in less than a week (sizing fee applies).

Part # <u>LP02-514RE-25</u> \$995

hloubka ostrosti

ideální optický systém: bodový předmět → bodový obraz v okolí obrazu se paprsky rozbíhají v kuželu, jehož úhel závisí na velikosti apertury

reálný optický systém: bodový předmět → difrakční stopa kvůli konečná velikosti apertury je světlo fokusováno do tunelu válcového tvaru

paprsky v okolí clona ohniska *c = f/d*

16

délka difrakčního tunelu:

$$\frac{l}{\lambda} \doteq \frac{1}{4} \frac{1}{Z^2 D^2}$$

šířka difrakčního tunelu:

 $\frac{d}{\lambda} \doteq \frac{1}{3} \frac{1}{ZD}$

pro objektiv Z=20x : $l = 86 \ \mu \text{m}, d = 4.6 \ \mu \text{m}$ $\Delta = 250 \ \text{mm}, D = 2 \ \text{mm}, \lambda = 550 \ \text{nm}$

intenzita ramanského rozptylu úměrná počtu vazeb v difrakční stopě

operace se spektry - rozklad vibračních pásů

výpočet druhé derivace představuje jednorozměrné zjednodušení analýzy laplasiánu skalárního pole. dá se ukázat, že

důsledek: **záporně vzatá druhá derivace** změřeného spektra v oblasti pásu AMIDE udá návrh počtu a polohy píků k rozkladu

raman renishaw, 50x, 514 nm, 10 mW, 1000 s

ramanské spektrum (částečně fosforylovaného) CTD a jeho záporná druhá derivace

předpokládejme spektrum y[k], které chceme rozložit na známé komponenty $x_i[k]$

optimálním způsobem:
$$y[k] = \sum_{i=1}^{I} a_i x_i[k]$$
, přičemž
z podmínky $\sum_{k=1}^{K} \left(y[k] - \sum_{i=1}^{I} a_i x_i[k] \right)^2 \rightarrow \min$ dostáváme
 $j = 1..I: \sum_{i=1}^{I} a_i \sum_{\substack{k=1 \ K}}^{K} \left(x_i[k] x_j[k] \right) = \sum_{\substack{k=1 \ Y}}^{K} y[k] x_j[k]$

pokud by spektra byla ortogonální, $X_{ij}\equiv \delta_{ij}$, byl by rozklad prostou projekcí $a_j=Y_j$,

v obecném případě je třeba řešit vzniklou soustavu rovnic

$$\sum_{i} a_i X_{ij} = Y_j$$

před rozkladem spektra je nutné odstranit případnou luminiscenci,

je vhodné vyloučit problematické oblasti (Rayleighův rozptyl apod)

raman renishaw, 50x, 514 nm, 10 mW, 1000 s

ramanská spektra (částečně fosforylovaného) CTD a jeho aminokyselinových konstituentů

Moderní vybavení umožňuje specifický typ měření a jeho zobrazení – tzv. **ramanské mapy**:

Vzorek je automaticky změřen na mnoha místech a vybraným nalezeným píkům jsou přiřazeny barevné odstíny, jejichž sytost odpovídá výšce píku.

Ramanská mapa grafitové šupiny

Pokud obraz složíme, vypovídací hodnota barevného tónování napy je pro nás vysoká.

Povrchově zesílená ramanská spektroskopie

albumin v krevním séru: 0.63 mM

cca 2/3 krevních bílkovin, 35-50 g/l, 67 kDa, kódován 609 amino kyselinami, 585 zůstává ve finálním produktu (prvních 24 aminokyslein tvoří signální část genu)

ALE: koncentrace alaninu z albuminu: 38.7 mM (61 alaninů ve finálním produktu)
A: koncentrace 'proteinové páteře' z albuminu: 0.37 M

plazmonová rezonance

Kovové matriály vykazují v těsné blízkosti svých povrchů zesílení elektrického pole dopadajících elmag vln.

používané materiály:

Ag – největší zesílení Au – nejstabilnější Cu, Sn, grafen..

SERS poprvé pozorován na zdrsněných stříbrných elektrodách

Poloha a síla plazmonové rezonance závisí na optických konstantách kovu.

LFIEF (local field intensity enhancement)

$$\text{LFIEF}_{\vec{r}} = \frac{\left|\vec{E}(\vec{r})\right|}{E_0}$$

příprava nanočástic

kvůli biokompatibilitě preferujeme jako rozpouštědlo vodu:

- Au citrátová redukce HAuCL₄ při varu (Turkevich)
 - sférické, průměr cca 15 nm
 - excitace 633 nm

Ag - citrátová redukce AgNO₃ s leptacím činidlem za pokojové teploty

- oba druhy nanočástic pasivovány citrátem, nesou na povrchu záporný náboj
- připravené koloidní roztoky stabilní po dobu týdnů/měsíců

agregace nanočástic vede k dalšímu navýšení zeílení řízené srážení nanočástic – MgSO₄, NaCl, ..

20.00 K X Width = 5.717 µm Pixel Size = 5.583 nm ESB Grid is = nanostribro hnede reden_09.tif 0 V

v některých případech lze s výhodou agregovat přímo analytem

2 μm*	2.6 mm	2.20 kV	Signal A = InLens				11 Nov 2014	Photo No. = 3974
	2.50 K X		Width = 45.74 µm	Pixel Size = 44.67 nm	ESB Grid is =	0 V	r4_03.tif	

100 uM Rhodamine 6G, 20x capillary, 10x10s, 30 mW at 633 nm

rhodamine 6G SERS

raman scattering, capillaries

astigmatism mending:

- immersion
- square capillaries

- 20x lens: focal cylinder
- $l = 86 \ \mu \text{m}, d = 4.6 \ \mu \text{m}$

focal interval: 9 μm (1mm capillary, K10, water)

 $\varphi_{\!\perp}\approx\!330D$

Komerční substráty (SILMECO) umožňují nakápnutí vzorku na povrch.

Continuous wavelength tunable Raman spectroscopy

TERS – TIP ENHANCED RAMAN SPECTROSCOPY

Central European Institute of Technology BRNO | CZECH REPUBLIC

AFM tip as a hot spot

the displayed LFIEF map (in a false-colour log-scale as shown in the previous figures). If we monitor the LFIEF for different λ 's at point A (which is 0.5 nm above the surface and immediately below the tip), we obtain the result displayed in (b). This would be approximately the position that could be occupied by a molecule lying on the surface. The peak at ~620 nm is the coupled plasmon resonance between the tip and the surface.

Au wire, etched

0 V

10 µm*

5.3 mm 10.00 kV Sig 800 X Wi

Signal A = AsB

Width = 142.9 µm Pixel Size = 139.6 nm ESB Grid is =

25 Sep 2014 Photo No. = 2320 Au AFM hrot_04.tif

Pa 1 = 112.9 nm Pb 1 = 21.8 °

200 nm*	5.8 mm	5.00 kV	Signal A = InLens				26 Sep 2014	Photo No. = 2364
	26.63 K X		Width = 4.293 µm	Pixel Size = 4.192 nm	ESB Grid is =	0 V	Au AFM hrot_08	3.tif

Reflectivity mapping of on-site etched Au STM tip in contact with Au@BK7 substrate at room ambient; the scale bar is 1 um. The inset shows higher resolution measurement overlayed with Raman map revealing the hot spot.

Questions?

Central European Institute of Technology BRNO | CZECH REPUBLIC