## Introduction - Star Clusters II



HR Diagrams for Various Open Clusters

## Gaia - before and after



## Location of Star Clusters



## Galactic Distribution


+- 20 degree Galactic latitude

## Location of Globular Clusters

- Globular Clusters are found in

1. Galactic Halo - formed there
2. Galactic Bulge formed there
3. Galactic Disc - path


## Star Clusters - tricky to analyze



## Diameters of open clusters

- How could we determine the diameter of a star cluster?

1. The determination, for example inspection by eye, should be no problem. Be careful, most open clusters show no real concentration
2. Count the number of stars (members) in concentric rings around the cluster center
3. If the derived distribution is not symmetric $=>$ go to 1 . and shift the coordinates of the center

- This procedure could be easily done via a computer program

III 2 m


## Gaia data



Ferreira et al., 2019, MNRAS, 483, 5508

## Diameters of open clusters

## Pre - Gaia

Kharchenko et al., 2013, A\&A, 558, A53


## Radii of open clusters



Janes et al., 1988, AJ, 95, 771



# Why do Star Clusters dissipate? Differential Galactic Rotation 

Total Mass of the Milky Way: $\quad M_{M W}=2 \cdot 10^{11} \mathrm{M}_{\odot}$

Gravitational acceleration of the complete star cluster $g_{O C L}$ and the individual member $g_{*}$ :

$$
g_{O C L}=\frac{G \cdot M_{M W}}{R_{G C}^{2}} \quad g_{*}=\frac{G \cdot M_{O C L}}{\left(R_{G C}-r\right)^{2}}
$$Galactic centre

$r$... Distance from star to the star cluster's centre

The difference of these two values, is the force, of which "the Milky Way" tries to pull away a star from the cluster

$$
g_{M W, *}=\frac{2 \cdot G \cdot M_{M W} \cdot r}{R_{G C}^{3}} \text { for } r \ll R_{G C}
$$

On the other side we have the gravitational force of the star cluster. The stability radius $r_{S}$ is defined as:

$$
\frac{2 \cdot G \cdot M_{M W} \cdot r}{R_{G C}^{3}}=\frac{G \cdot M_{O C L}}{r_{S}^{2}} \Rightarrow r_{S}=R_{G C} \cdot\left(\frac{M_{O C L}}{2 M_{M W}}\right)^{1 / 3}
$$

$r_{s}=10.9 \cdot\left(\frac{M_{O C L}}{1000}\right)^{1 / 3}$ for $R_{G C}=8 \mathrm{kpc}$ in units of $\left[\mathrm{M}_{\odot}, \mathrm{pc}\right]$
For $1000 \mathrm{M}_{\odot}=>$ Diameter 20 pc

## Common proper motion



## Hyades

After the correction of the solar motion

Well known but high accuracy especially for distant clusters is needed


Figure 2. Diagram of the absolute proper motions of the Catalogue; photographic magnitude 6 to $14^{\circ} \mathrm{O}$, numbers I to 53 I . The dotted lines separate the Praesepe stars from the backgroundstars.

## Common proper motion



Credit: Tristan Cantat-Gaudin

## Dramatic improvement by Gaia even for overlapping star clusters

## Kinematical membership criteria

- Members follow the motion of the cluster center of gravity
- Internal velocity distribution
- From best to ...

1. Radial velocity and proper motion
2. Radial velocity
3. Proper motion


Clemens, 1985, ApJ, 295, 422

## Determination of the kinematical membership

- Three possibilities:

1. Observation of the position at two difference times (= epochs), with a very large time basis. First photographic plates around 1860, largest time scale about 160 years
2. Proper motions of stars in the direction of the Declination $\alpha$ and Right Ascension $\delta$
3. Radial velocity measurements




- Calculate the absolute distance in X and Y for both epochs and each star individually

$$
\begin{array}{ll}
S_{x_{i}}^{\prime}=\sum_{j=1}^{N}\left(x_{i}^{\prime}-x_{j}^{\prime}\right), & S_{y_{i}}^{\prime}=\sum_{j=1}^{N}\left(y_{i}^{\prime}-y_{j}^{\prime}\right), \\
S_{x_{i}}^{\prime \prime}=\sum_{j=1}^{N}\left(x_{i}^{\prime \prime}-x_{j}^{\prime \prime}\right), & \tilde{S}_{y_{i}}^{\prime \prime}=\sum_{j=1}^{N}\left(y_{i}^{\prime \prime}-y_{j}^{\prime \prime}\right) .
\end{array}
$$

- Plot the histograms of the differences of the absolute distances
- The distributions are fitted with Gaussian functions

$$
\begin{equation*}
f(x)=\frac{A_{x}}{w_{x} \sqrt{\pi / 2}} \mathrm{e}^{-2\left(\frac{\pi-x_{0}}{\sigma_{x}}\right)^{2}}, \quad f(y)=\frac{A_{y}}{w_{y} \sqrt{\pi / 2}} \mathrm{e}^{-2\left(\frac{(x-w}{\sigma_{y}}\right)^{2}}, \tag{6}
\end{equation*}
$$

- The probability $p$, if a star is member of the star cluster is defined as

$$
\begin{array}{rlr}
p_{x} & =\mathrm{e}^{-2\left(\frac{x-x_{0}}{\sigma_{x}}\right)^{2}}, & p_{y}=\mathrm{e}^{-2\left(\frac{\partial-v_{0}}{\sigma_{y}}\right)^{2}} \\
p & =p_{x} * p_{y} \tag{8}
\end{array}
$$




Javakhishvili et al. (2006, A\&A, 447, 915) for Collinder 121


From these diagrams, the membership probability can be exactly determined

