Výpočet parametrů plazmatu z profilu spektrálních čar

Profily vodíkových čar

A. Brablec

karedra fyzikální elektroniky

PřF MU v Brně

Kotlářská 2, 61137 Brno

Česká republika

Diagnostika 1, 2020

Obsah

- Formulace problému
- Typy rozšíření spektrálních čar
- Odpočet vlivu přístrojové funkce: Voigtova funkce, aproximace pomocí B spline, MNČ
- Šířka spektrálních čar
- Rozšíření vodíkových čar H_{α} , H_{β}
- Závěr výpočet n_e z profilu spektrálních čar vodíku

Formulace problému

- vliv přístrojové funkce Fredholmova integrální rovnice 1. druhu)
- vliv detektoru (Volterrova integrální rovnice 1. druhu)
- oscilace plazmatu, Abelova transformace
- hyperjemá a multipletní struktura komponent
- vliv rozšiřujících faktorů na profil komponent

Inverzní problém: $\hat{K}\varphi=f$

Hadamardovy podmínky:

- 1. řešení existuje pro libovolnou funkci f
- 2. v daném prostoru existuje jen jediné řešení
- 3. závisí na $f \in G_2$ spojitě
- 4. spočtené řešení je stabilní

Vliv šumu, dodání netriviální informace

Typy rozšíření spektrálních čar

- přístrojové
- vlivem plazmatu
 - Dopplerovo
 - tlakové
 - Starkovo
 - van der Waals
 - rezonanční

Odpočet vlivu přístrojové funkce

$$h(\gamma) = \int_{-\infty}^{\infty} f(x)g(\gamma - x)dx.$$
 (1)

Voigtova funkce

$$V(x;a) = \frac{a}{\pi} \int_{-\infty}^{\infty} \frac{\mathrm{e}^{-t^2}}{(x-t)^2 + a^2} \mathrm{d}t, \ x = \frac{\gamma - \gamma_0}{\alpha_{\mathrm{D}}}, \ a = \frac{\alpha_{\mathrm{L}}}{\alpha_{\mathrm{D}}}$$
(2)

$$I_{\rm D}(\lambda) = I_{\rm D}(\lambda_0) \exp \left(\frac{\lambda - \lambda_0}{\alpha_{\rm D}}\right)^2, \\ \Delta \lambda_{\rm D} = 2\alpha_{\rm D}\sqrt{\ln 2} = 2\frac{\lambda_0}{c}\sqrt{\frac{2kT_{\rm n}\ln 2}{M}}.$$
 (3)

Srážková aproximace - Lorentzův profil tvar s šířkou $2 \alpha_{
m L}$

$$I_{\rm L}(\gamma) = \frac{I_{\rm L}(\gamma_0)}{(\gamma - \gamma_0 - d)^2 + \alpha_{\rm L}^2},$$

srážková aproximace - rozšíření elektrony statická aproximace - těžké ionty

V případě, že nemůžeme určit parametry plazmatu (neznáme model), lze pouze spočítat vlastní profil čáry (spektrum).

Další metody pro řešení inverzní úlohy byly navrženy i jiné metody - FFT, regularizační metody, metoda maximální entropie, a další.

http://www.provencher.de/contin.html

(4)

Odpočet přístrojové funkce ^a pomocí B - splinů

$$h(\gamma) = \int_{a}^{b} \sum_{i=1}^{n} a_{i}B_{i}(x)g(\gamma - x)dx = \sum_{i=1}^{n} a_{i}\int_{a}^{b} B_{i}(x)g(\gamma - x)dx.$$

$$S_{k} = \sum_{j=1}^{N} \left(h_{j} - \sum_{i=1}^{n} a_{i}\int_{a}^{b} B_{i}(x)g(\gamma_{j} - x)dx\right)^{2} = \min.$$

$$\alpha_{ji} = \int_{a}^{b} B_{i}(x)g(\gamma_{j} - x)dx.$$
(5)
(6)

^aA. Brablec, D. Trunec, F. Šťastný, J. Phys. D: Appl. Phys.. **32** (1999)1870 - 1875

$$\sum_{i=1}^{n} B_i(x) a_i \pm t_{N-n+4}(\beta) \sqrt{s^2 \mathbf{b}^{\mathbf{T}} \mathbf{C}_{11} \mathbf{b}}, \qquad \mathbf{b}^{\mathbf{T}} = (B_1(x), \dots, B_n(x)).$$
(8)

 $t_{N-n+4}(\beta)$ je β -kvantil Studentova rozdělení s N-n+4 stupni volnosti

Odhad optimální hodnoty n - kritérium "cross validation"

$$C(n) = \frac{\sum_{j=1}^{N} (h_j - \int_a^b (\sum_{i=1}^n a_i B_i(x)) g(\gamma_j - x) dx)^2}{1 - n/N}, \qquad n = 5, 6, \dots$$
(9)

 a_i byly již určeny dříve

Testovací příklad č.1:

a) 1 - "exp." profil čáry, σ =0.01, 2 - teoretický Dopplerův profil, 3 - výsledek, 4 -Lorentzův profil jako přístrojová funkce. n=11, N = 201. b) pás spolehlivosti, p= 99.7 %. Srovnání skutečné optimální hodnoty n_{opt} a hodnoty n_e spočtené podle kritéria pro jeden běh úlohy, p je pravděpodobnostní obsah pásu spolehlivosti pro n_{opt} , teoretický pravděpodobnostní obsah je 68.3 %.

σ	$n_{ m e}$	$n_{ m opt}$	p [%]
5×10^{-2}	19	11	71
1×10^{-2}	13	11	38
5×10^{-3}	19	11	49
1×10^{-3}	15	11	8
5×10^{-4}	15	17	97
1×10^{-4}	19	17	51
1×10^{-5}	19	19	20

Testovací příklad č.2:

a) 1 - "experimentální" profil čáry zatížený šumem s normálním rozdělením σ =0.01, 2 - přístrojová funkce - dělená 2. b) 1 - teoretický profil čáry, 2 - výsledek výpočtu, uzly jsou rozděleny rovnoměrně, 3 - výsledek výpočtu, nerovnoměrné rozdělení uzlů. Dimenze prostoru splinů je *n*=32, počet "experimentálních" bodů je *N* = 200.

Voigtův profil - výpočet

$$z = x + i.y, w(z) = v(z) + i.u(z), w(z) = \frac{i}{\pi} \int_{-\infty}^{\infty} \frac{e^{-t^2}}{z - t} d$$
 (10)

$$\frac{\partial v(x,y)}{\partial x} = 2\Big(yu(x,y) - xv(x,y)\Big), \frac{\partial u(x,y)}{\partial y} = 2\Big(xu(x,y) + yv(x,y) - 1/\sqrt{\pi}\Big).$$
(11)
$$g(\gamma) = Re\sum_{k=1}^{m} \frac{\alpha_k + i\beta_k}{\gamma + x_k + iy_k},$$
(12)

kde γ je nezávisle proměnná, α_k , β_k , x_k , y_k jsou reálné koeficienty (které známe nebo je musíme určit jinak, např. MNČ), můžeme přímo získat pro měřený profil

$$h(\gamma) = Re \sum_{k=1}^{m} (\beta_k - i\alpha_k) w(z'_k), \qquad (13)$$

kde k-tý člen je roven

$$z'_{k} = x'_{k} + i.y'_{k}, x'_{k} = \frac{\gamma - \gamma_{0} + x_{k}}{\alpha_{D}}, y'_{k} = \frac{\alpha_{L} + y_{k}}{\alpha_{D}} \sqrt{\ln 2}$$
(14)

Srovnání odečtení přístrojové funkce pomocí B-splinů a metody nejmenších čtverců

Experiment - vf výboj v parách vody za sníženého tlaku, FPI RC150 Burleigh: Vlastní profil čáry H_{β} - Voigtova funkce: 1 - aproximace měřených dat kubickými B-spliny (n=7), 2 - spočtený vlastní profil čáry pomocí B-splinů, 3 - metody nejmenších čtverců, vlastní profil čáry - Voigtova funkce. Přístrojová funkce (Cd 479.9 nm) - 2 členy racionálně lomené funkce.

Citlivost α_D , α_L

$$\Delta_j = \sqrt{\frac{S_0}{N-p}} D_{jj} \,, \tag{15}$$

kde S_0 je součet čtverců odchylek, N je počet použitých dvojic bodů, p je počet určovaných parametrů, D_{jj} je diagonální prvek kovarianční matice, která se vypočte jako inverzní matice k hessianu

$$H_{jl} = \sum_{i=1}^{N} \frac{1}{\sigma_i^2} \frac{\partial I_p(\lambda_i)}{\partial q_j} \frac{\partial I_p(\lambda_i)}{\partial q_l}, \quad j,l = 1,...,L$$
(16)

kde $I_p(\lambda_i)$ se spočte jako konvoluce Voigtovy funkce a racionálně lomené funkce (aproximace přístrojové funkce racionálně lomenou funkcí).

Závislost relativní standardní odchylky (RSD) Dopplerova a Lorentzova rozšíření na Lorentzově rozšíření $\alpha_{\rm L}$ pro konstantní pološířku přístrojové funkce (0.01) pro různé hodnoty Dopplerova rozšíření (od hodnoty 0.06 s krokem 0.05 - z levého dolní rohu obrázku nahoru).

Šířka izolovaných spektrálních čar

H β 4861 A°, T = 10⁴ K, T = 4×10⁴ K, n_e = 10¹⁴ cm⁻³, n_e = 10¹⁷ cm⁻³ $w_s \, \mathsf{A}^o$ 0.42 48 0.42 50 $w_D A^o$ 0.35 0.35 0.70 0.7 OI 7254 A^o, $T = 10^4$ K, $T = 4 \times 10^4$ K, $n_e = 10^{14}$ cm⁻³, $n_e = 10^{17}$ cm⁻³ $w_s \, \mathsf{A}^o$ 0.015 16 0.021 23.4 $w_D A^o$ 0.13 0.13 0.26 0.26 Arll 4806 A^o, $T = 10^4$ K, $T = 4 \times 10^4$ K, $n_e = 10^{15}$ cm⁻³, $n_e = 10^{18}$ cm⁻³ $w_s \, \mathsf{A}^o$ 0.0014 1.4 0.002 2.1 $w_D A^o$ 0.08 0.08 0.15 0.15

celková šířka H $_{\beta}$: aproximace VCS, převzato ^a

^aC. R. Vidal, J. Cooper, E. W. Smith, Astrophys. J. Suppl. **214** (1973) 37

 H_{α} , H_{β} - započtení dynamiky iontů, převzato ^a

^aJ. M. Luque, M. D. Calzada, M. Saez, J. Phys. B: At. Mol. Opt. Phys. 36 (2003) 1573 - 1584

H_α: pro 0.5 × 10¹⁸ cm⁻³ < n_e < 2.5 × 10¹⁸ cm⁻³ a 6 eV < kT_e < 10.5 eV, převzato ^a

^aS. Buscher, Th. Wrubel, S. Ferri, H-J. Kunze, J. Phys. B: At. Mol. Opt. Phys. 35 (2002) 2889 - 2897

 $\frac{\text{červený posuv H}_{\alpha}: \text{ pro } 0.5 \times 10^{18} \text{ cm}^{-3} < n_e < 2.5 \times 10^{18} \text{ cm}^{-3} \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ převzato } a \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text{ a 6 eV} < kT_e < 10.5 \text{ eV}, \text$

H_β, přístrojová funkce 0.011 nm: vzduch při atmosférickém tlaku a) LTE (rezonanční rozšíření < 2 × 10⁻⁴ nm), b) non - LTE (T_g = 300 K), převzato ^a. HWHM v nm, P tlak v atm, T_g v K, n_e v cm⁻³, X_H podíl atomů H v mol $\Delta \lambda_{Stark} = 1.0 \times 10^{-11} (n_e)^{0.668}, \Delta \lambda_{rez} = 30.2 \times X_H (P/T_g), \Delta \lambda_{Waals} = 1.8 \times P/T_g^{0.7}, \Delta \lambda_{Natural} = 3.1 \times 10^{-5}, \Delta \lambda_{Doppler} = 1.74 \times 10^{-4} T_g^{0.5}.$

^aC. O. Laux, T. G. Spence, Plasma Sources Sci. Technol. 12 (2003) 125 - 138

Závěr

- 1. C. R. Vidal, J. Cooper, E. W. Smith, Astrophys. J. Suppl. 214 (1973) 37.
- 2. H. R. Griem, Spectral Line Broadening by Plasmas, Academic Press, New York (1974).
- 3. H. R. Griem, Principles of Plasma Spectroscopy, Cambridge University Press, Cambridge (1997).
- 4. C. Stehle, Astronom. Astropjys. Suppl. Ser. 104 (1994) 509 527.
- 5. M. A. Girgos, V. Cardenoso, J. Phys. B: At. Mol. Opt. Phys. 29 (1996) 4795 4838.
- 6. M. Lemke, Astronom. Astrophys. Suppl. Ser. 122 (1997) 285 292.
- 7. C. Stehle, R. Hutcheon, Astronom. Astropys. Suppl. Ser. 140 (1999) 93 97.