5.tn/-egrotionoumanifoldsRecall that the transformation formula for multiple integrals ( or wordinahe charge formula for integrals ) : Suppe UEIR " open subset and § : U → ☒LU ) o diffeau . between open subsots of IR " . Let f- : OILU) → IR be a smooth function with uaupoct Support : ff =/(f. E) lotet Dot / ( * ) low) u - . ↳ oks like the Transformation of n - form) ou uefds . of din . n : Suppe M is a suooth mfd . of dim . n , WER " ( M) and (U , u) is a chart of M : Then I ! G- für . w " ^ . . „ : U → IR s . L . w / u = w!. „ du^^ . . ndu " ( w !.ru = w # , . . . . ¥) : U → IR ) . Support v : U → v ( U) c- IR " is on other chart for M with domain U . Then w / • = wir. . „ drin . . ndu " . Locd werdende expressives W ! .no u " : hlu ) → IR of the two function > wir _ } wir. . „ • ✓ ^ : HU) → IR ho ( Un ) resp . ( v.v ) wir. . . In- ^ ly) ) = wlüly) ) (Eier , . . . , Jähn ) wir. . " ( v - " (z) ) - WK- ' Iz ) ) ( Eu - ' es , . . . . Er%) . Now let Ä : uhu ) → vlu ) , § : = von-1 = ) v - 1. § = u " and Tyu" = ☒yj _ ? Ty $ . - - w! „ hi " y) ) = w In- " y)) Fyn % . . . , Tyu - ' en ) ÄHH) : Blog , . . . , Tag,jj: qq ) → " " "" "" " IEEE) = detl Dyp ) wlü ' ly ) ) Fuji'er . . . . § en ) = det ( Dyp) w „ K" ldly)) . ¥ y c, since D is od://.edu . If we as since that U is connected , heute also u ( U) , then der (Byd ) is either always positiv or always negative an u ( U) . (*) soy, that integral one Local Word mole expressen of w is well defiueud up to a Sign . ( i. e. independent of Voice of chart up to a Sign ) . 5.10rientatiousupp.aeV i ) an dim . Vector Space . If { an . . . , an } and { b , . . . , bis } one two ardened basis of V , then I ! | , waer uuop A : V → V sie . Alai ) - b ; k i . und { hi } < „ how the some orientalen , The two bei > { • ihn : in it alt (A ) > 0 ; if der /A) < o , they are > aid to home opposite Orientalions . • „ Having the some oriental- iae " defines an equivalauce relation on the seh efwdoed bons of V and I exoctly two equivabuce Classes . • An orientali en on V is the do ice of one of those two Classes and a wecker Space with a do ice of Oriental"en is Called an oriented lecker spoce . Having morgen an oriente tien on V , any odered boss in the Chula Cross is called positivelegieren had and any that is not negativen oriented . • Standard orienvatieu on R" is the orientalion detern in ed by the standard basis her . . . , en } . A boris { an . . . . an } is positiven Oriented w . r . ho the Jhoedod anzutreten , if der / Las , . . , an ) ) > ° . • Given two n din . oriented wecker Spaces V and W , then a linear isauopu.su A : V - W D uelled orieuhatien pnesevmg , if A mops a I have any) pontivdy Oriented basis to a positiven oriented basis . Other wie it is called orion retten rewersing . On mfds . we von talk about orientatieus on the tagein Hoch , but we need seine nation of Smooth ness : Def.5.IM mfd . ① M is toll edorient-be.it wie war ckoose on on en toten ou IM THEM s . t . the following hdds : Fer any Local f-raue { sei , . . in } of TM on air connected open sunset U c- M , the boss { si! . i. ( y) } of JU - - TYM is either positive Ly orrcnnad ty c- Vor negativen oriented } c- 0 . ② If M orientierte o Choi ( e of orienhetieu on IM the M os in ① is Called on orienhtiai on M A orientierte uufd . with a Cho> en orientotiae is called on oriented mfd . • If M is connected and Orientale , it is easy to see that on orientalen i ) olnhdydeheui, med by the eseuhotias on one on tangente Space . Have Ya connected orientabk mtd . 3- two bereute tieus . • An open Sunset of on oriented held . is itself in a no herd way on oneuhed mfd . Det-5-2-supp.ae Mond N one oriented mhds . oudf : M → N is a lokal diffoauedpiisvn . Then f- is Called on - enhotiae preserviug , if the linear isomorph im If : IM→ Ty! i) • nen toten preservrng tx c- M . Orientalim vie Special atloses : Def . 5.3 M mfd - . ① An oriented atlas on M " an athos d- = { (Ua .ua) : ✗ e- I } for M sit . for any d. ß c- I with ↳ n ↳ + of the transition wop ueiuj ' : ↳ (↳ ntfs ) → ↳ ( Oas ) Kos the pnopehy that old ( Dlusouj' ) ) ) O on K ( Un ) . ② Two Oriented ehrloses on M one called area hatten egu.ve/euh, if their union is again on oriented ethos . Prop.5.IM mfd . of din . n . Then the following are eguivoleut : ① M is orieukeble ② M admin on oriented otto, ③ I on n form W ER " LM) s.ir . WK ) -1-0 K ✗ c- M . Proof ① ② Suppae M is orieuhableaudfixonon.eu/-otrai . ( Kool on athos an M , lt { ( Ua , Ua ) : ✗ c- I} 5. t.lk is Connected Hat I . =) Ihn : I ↳ → T " • LK ) = TIR " =/R " is either halt ) 4K ) = orieuhokieupesev.mg V-xc-Uaarorieuhotiarhenesmgk-c-Ua.luthe first lore we Keeps the chart Os it is end in the second Lease we can pose it with on orion hatten ne verging linear uuop IRU → IR " ( for in stare exchange the first two variables) . In this we we abtoin an oneutedatlos . ② ③ Let d- = { (Ua , u . ) : ✗ + I } be an Oriented atlas on M and { ti }, ⇐ mir • partition of unity that is subordmahe to the war U = { Ua }of of M - For ie IN choöse ✗ ; c- I sie . Suppe (Ai ) E ↳ . . und dehne wie R " (M) by Wi : = f- ; du ; ^ . . n du !: ( extended by zero to all of M ) . Set W : = Sei . Since supplf :) is ↳ colley Janke , IEIN W is a smooth n - fernen M Fix ✗ cM . Then { fik) = 1 impu.es 7 ist . Pik ) > 0 i EIN ßy definition , Wik ) (¥ / - - - / du ,; E) = f. H ) > 0 . " i Since the athos is oriented and all fjl, home non negative volumen M , we home Wik ) (¥. , _ . ¥;) 70 ltj . =) W (x ) # 0 ③ ① we R" LM) nowhere vanishing . For ✗ c- M , we well a how ) 24 , _ . in } of FM rosihudy oriented , if WK) 141 , . . , s ) > 0 . This giuesononcukotrae On M . ☐ Reiuork Prop . show > • Emery Oriented ottos determine, an oneuhotiae and two Oriented athos on M de Le wine the some omen la Hat ⇐> they are ostentative eyuivaleut . • Simihorly , any nowhere vorweg n - tour de termine, an orient at ion on M and any two such n form W end E determine tue sone • nen hohen ⇐ Ja positiv Smooth fcl . f- : M → IR on M sie . c- = fw . • Given oneuhoble mfd . , a choke of orieuhotion en M i ) eguivoleut to a Chord of a maximal (or on Kriminal / Guidance ( Iag ) on.cn/-edotlos , and also to a choke of nowhere vanishing n fern w up to luultpl . by a smooth pontes function . E- . M = IR" is Orientale . E- Möbius hand is not oncutable . ( see Tutorial) . IRP " is orieenhable n is add . 5.2lntegrosupp.aeM i ) an oriented h - dim . mfd . and let d- =\ ( Ua , u ) : ✗ c- I} he on oriented athos ( giving rise to the fix ed oienratieu) . Then we con olefine on integral for n form , on M og fellows : we write supplw) : ={xEM:wH*→ for the Support of w c- Rh (M) und R! IM ) ter the Space of h form ) with Leonrod Support . Suppae w c- RI (M ) . Since supplw) i) uaipoct , 7 finitely Wong Charts ( U; , u ; ) i = 1 , . - , e of the maximal oriented atw.lt/def;n.uytueon-atatieu)s.l.Mpplw)E4U-.uUeFurther,letfj: M → [ 0,1] he Smooth functions g-=p . . . . e sie . supplfj ) c- Uj and ( [ f; ) 1=-1 . 5=1 Supplw ) [ ( hoon partition of Unity Subordmete to { Us , . . , Ue , MI keppko) and let f , he the Sun of dt functions with Support in Us , fz o, the reuuoining functions whal Support in lonhoined in Uz, . . ) ( of fiw I u ; so :-. iiiiiiii.EE?::;:.;jMi=nuiNiTfiwFdw = { f , w fiwi ER :(Ui ) . Fi!" :"" " . ¥! :}, Is = Since supplfiw ) is a uaipod Sunset of U ; , the night- hood Si de equal, a finde kein of Integral, over Ladies with uaepodn Support . Haue , this integral is hnihe . het us Check that )µ w is well - de/med , i. e. independent of all the clones : Suppe ( Y , u ; ) one An itelyuony Charts of it and gj : M → [0,1] functions 6s ohne Wushu ched w . r . ho there Cheers . w = { gjw und heule tiw = Efigjw j i - { ) fiwluily )) / Ty " :& . . . , Tgqi ' en )i uilvil = { Stig> wlüilyl ) (Ju es . . . .EU?en ) ii, uilu ;) = E) → supplfigiw) in u ; / Uinvj ) c- Uinvj Jfig; w Kitty) (Tg leiten . . . . Tyui ' en ) uiluinvj ) = / detlDG.mil/fig,.wlu.ilyD(Tjj.;ijji-.iE- ' en ) Hui' )/ y) " ilvinvj ) = Jfigjwlv; Ly ) (Trier. . . . Ty:L ) =/ → , P " i / Uisv;) µ IN;) trauten . ruhe tormhegnels Since figjw vereistes and detlDK.eu;-) ) O but ).de of 4- ( U , svj ) . Heuce , / „ w i > wdtdetined .