#(1) x=c(53,44,45,55,59,51,72,56,50,58) n=length(x) #(a) #X_1,...,X_n je nahodny vyber ze spojiteho rozdeleni s medianem \delta. # H_0: \delta=60 ... je median (stredni hodnota) rovny 60? #(b) t.test(x,mu=60) hist(x) plot(density(x)) qqnorm(x) qqline(x) plot(ppoints(n,0),pnorm((sort(x) - mean(x))/sd(x))) abline(0,1) library(nortest) library(normtest) kurtosis.norm.test(x) skewness.norm.test(x) jb.norm.test(x) shapiro.test(x) lillie.test(x) ad.test(x) cvm.test(x) pearson.test(x) #(c) Rplus=rank(abs(x-60)) t=sum(Rplus*sign(x-60))/(n+1) t R=1:n W=sum(R)/(n+1) k=2 for (i in 1:n){ X=combn(n,i) K=length(X[1,]) for (j in 1:K){ b=X[,j] W[k]=(sum(R[-b])-sum(R[b]))/(n+1) k=k+1 } } a=table(W)/2^n plot(a,type='h') 2*sum(W<=t)/2^n #presna p-hodnota wilcox.test(x,mu=60,exact=TRUE) #exaktni Wilcoxonuv test t2=t/sqrt(n*(2*n+1)/6/(n+1)) 2*pnorm(t2) wilcox.test(x,mu=60,exact=FALSE,cor=FALSE) #asymptoticky Wilcoxonuv test #(d) t=sum(qnorm(Rplus/2/(n+1)+1/2)*sign(x-60)) W=sum(qnorm(R/2/(n+1)+1/2)) k=2 for (i in 1:n){ X=combn(n,i) K=length(X[1,]) for (j in 1:K){ b=X[,j] W[k]=sum(qnorm(R[-b]/2/(n+1)+1/2))-sum(qnorm(R[b]/2/(n+1)+1/2)) k=k+1 } } a=table(W)/2^n plot(a,type='h') 2*sum(W<=t)/2^n #presna p-hodnota t2=t/sqrt(sum((qnorm((1:n)/2/(n+1)+1/2))^2)) 2*pnorm(t2) #asymptoticka p-hodnota library(snpar) ns.test(x,q=60) #van der Waerdenuv test #(e) t=sum(sign(x-60)) t W=n k=2 for (i in 1:n){ X=combn(n,i) K=length(X[1,]) for (j in 1:K){ b=X[,j] W[k]=length(R[-b])-length(R[b]) k=k+1 } } a=table(W)/2^n plot(a,type='h') 2*sum(W<=t)/2^n #presna p-hodnota U=sum(x>60) binom.test(U,n) #znamenkovy test jakozto spec. pripad binomickeho library(BSDA) SIGN.test(x, md=60) #znamenkovy test #asymptoticka verze t2=t/sqrt(n) 2*pnorm(t2) #asymptoticka p-hodnota #(2) x=c(14.4, 15.9, 14.4, 13.9, 16.6, 17.4, 18.6, 20.4, 20.4, 15.4, 15.4, 14.1) y=c(20.4, 22.9, 19.4, 24.4, 25.1, 20.9, 24.6, 24.4, 24.9, 19.9, 21.4, 21.4) #(a) z=x-y n=length(z) hist(z) plot(density(z)) qqnorm(z) qqline(z) plot(ppoints(n,0),pnorm((sort(z) - mean(z))/sd(z))) abline(0,1) library(nortest) library(normtest) kurtosis.norm.test(z) skewness.norm.test(z) jb.norm.test(z) shapiro.test(z) lillie.test(z) ad.test(z) cvm.test(z) pearson.test(z) #(b) wilcox.test(x,y,paired=TRUE, alt="less") wilcox.test(x-y,alt="less") ns.test(x-y,q=0, alt="less") U=sum((x-y)>0) n=length(x) binom.test(U,n,alt="less") SIGN.test(x-y, alt="less")