library(ggplot2) library(plotly) library(dplyr) library(tidyr) library(gganimate) data<-airquality data$Temp<-(data$Temp-28)/1.8 ####Ukol 4#### p1<-ggplot(data,aes(x=Day,y=Ozone,color=factor(Month)))+ geom_point() p1 p1<-ggplot(data,aes(x=Wind,y=Ozone,size=factor(Month),color=factor(Day)))+ geom_point() p1 p2<-ggplot(data,aes(x=Day,y=Ozone))+ geom_point()+ facet_wrap(~Month) p2 ggplotly(p1) p<-p1+transition_manual(Month) # anim_save("271-ggplot2-animated-gif-chart-with-gganimate2.gif",animation=p) ####Ukol 5#### datavyb<-data%>% select(Day,Month,Ozone)%>% na.omit() p1<-ggplot(datavyb,aes(x=Day,y=Ozone,color=factor(Month)))+ geom_line(na.rm = T) p1 ggplotly(p1) plot_ly(data = datavyb, x = ~Day, y = ~Ozone,color =~factor(Month), type = "scatter", mode = 'lines+markers' ,connectgaps = TRUE) ####Ukol 6, 7#### p1<-ggplot(data,aes(x=Month,y=Ozone,color=factor(Month)))+ geom_boxplot() p1 datanew<-data%>% mutate(ozonekat = cut(Ozone, breaks = c(0,quantile(Ozone, probs = seq(0.25, 1, 0.25),na.rm = T)))) ggplot(datanew, aes(Ozone, Wind,color=ozonekat)) + geom_boxplot(aes(group = ozonekat),alpha=0.6 ,outlier.size = 0,outlier.colour = 'white',outlier.alpha = 0)+ geom_point() ####Ukol 8#### #klasika pairs(data) library(Hmisc) y <- as.matrix(data) rt <- rcorr(y,type="spearman") library(corrplot) corrplot(rt$r, method="square", type="upper", #addCoef.col = "black", # Add coefficient of correlation tl.col="black", tl.srt=45, #Text label color and rotation # Combine with significance p.mat = rt$P, insig = "label_sig", sig.level = c(.001, .01, .05), pch.cex = 1, pch.col = "black", # hide correlation coefficient on the principal diagonal diag=FALSE,col= colorRampPalette(c("blue","white", "red"))(200), mar = c(2, 4.5, 0, 0) ) #ggplot library(Hmisc) library(GGally) p1<-ggpairs(data) p1 p2<-ggcorr(data, method = c("pairwise", "pearson")) p2 p3<-ggpairs(data,columns = 1:4,aes(color=factor(Month)),lower = list(continuous = "smooth")) p3 library(ggcorrplot) p4<-ggcorrplot(rt$r) p4 p5<- ggcorrplot(rt$r, method = "circle",type = "lower",p.mat = rt$r) p5 mtlr <- reshape2::melt(round(rt$r,3)) mtlr<-mtlr%>% mutate(Var1=factor(Var1,ordered = T),Var2=factor(Var2,ordered = T)) mtlp <- reshape2::melt(round(rt$P,3)) mtlp<-mtlp%>% mutate(Var1=factor(Var1,ordered = T),Var2=factor(Var2,ordered = T)) #heatmap p.value <- mtlp$value p6 <- ggplot(mtlr, aes(Var1, Var2, fill = value, label=p.value)) + geom_tile() + scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, limit = c(-1,1), space = "Lab", name="Spearman\nCorrelation")+ theme_minimal()+ theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 10, hjust = 1)) p6 #plotly ggplotly(p5)