Importance of sample preparation S2004 Methods for characterization of biomolecular interactions - classical versus modern Mgr. Josef Houser, Ph.D. houser@m ail. muni, cz Ideal sample - ideal data o CO o 0.00 -2.00 -4.00 -6.00 -8.00 0.00 fJT f I r 1 T r f r 20.00 40.00 60.00 Time (min) ■ D120092016 NPH -D12009201ö_B Ciu: c-2::?2:-;_nch Hödel OneSteE Chr2/DoF = 20BS N 0 931 ±0.00373 SteE K 4.92E4 ±1.S3E3 H~' }H -6200 ±29 00ca^mo nS 6 675 cttnolftlea 0 0 0 5 10 15 2 0 2 5 3 0 Malar Ratio C o o ö Ü E Time/ seconds 10 20 30 40 1.05 1.00 0.95 if 0.90 0.85 0.80 0.75 1000 950 900 850-800-750- KD = 75.3±2.01 uM 10-2 10-1 10° 101 102 103 [25]/ uM 104 105 Real data - not always that ideal Tim e (m in) 0 10 20 30 W SO 60 70 SO 90 100 o.o? O 001 Hi ^ 0A2 -0j02 --Qß6 1= it: o Qj_ ■j .0 re tH4" 0.0 D.S I JO I. Molar Ratio —I— 2jj 10 15 20 MST experiment time [s] ] Zoom Extent Export v © 5 650 30 35 < ft w • • « • o _ • • w • • • t < +2 +3 +4 1x10 1x10 1x10 1x1 Ligand Concentration + 5 +6 0 1x10 Reproducibility crisis • Based on 2016 poll with > 1500 scientists included: 70 % were not able to repeat an experiment! 50 % were not able to repeat at least one of their own experiments !!! • Possible causes: • Selective choice of data (cherry picking) • Unsuitable experimental desing • Inappropriate data evalueation (statistics) • It's probable that partial problem is insufficient characterization of input material and procedures. Source: nature.com 4 Ideal sample properties • Defined (chemically, biologically, conformationally) • Pure (contamination by small molecules, macromolecules) • Homogeneous (micro-/rriacro- heterogeneity) • Stable (storage, time-demanding analysis) Sample identity Exact composition of sample (sequence, modifications, cleavage) Influence on MW, pi, interactions Covalent oligomerization Glycosylation iaHIA99^DAISNSN9AA^DSHAAIISiaN9ANAIANANSAiaSSS¥9AaSJ iswiAAasaATsaaiiiaaiiNNDANsDaasaAassaaisaisaAYSwaYDSj ¥I¥iaDASDlA9aiAAI¥NINa9¥aAlDaWI9SIH¥S¥ISATS¥¥WISnaD> Signal peptide )( 1MQFLTSLAAAASLVSLASAftlSGIALPQTVKAGDNINAIVVTEGYIQSVQDIAIAFGCAPAA SAYPGTLSTLLGSFYLGPEQCNVQNNITEPITIPESLVPGEYVIAASLFSLYGASSSPTVSN I JYNVTVNVGNET^tCTYVRSQFCVGNSNSTVGLGGYTRKINALSGTVA PO4 Degradation Phosphorylation Methylation Sample identity • MS identification 1 MKKESINTSG PDNTKSSISD 51 GVGTNNAVWH NWQTVPNTGS 101 RGTDNALWHN WQTVPGAGWS 151 DNALWHIWQT APHAGPWSNW 201 SLWYIKQTAS HTYPWTNWQS 251 WHIWQVAPNA GWTNWRSLSG 301 WQTATSDAWS EWTSLSGVTT 351 TSSWSTWTSL GGNLIDASAI EIEISNEISW TALSGVISAA NNADGRLEVF SWSGWHSLNE GATSKPAVHI NSDGRLEVFV GWQSLGGQIT SNPWYINSD GRLEVFARGA QSLNGVLTSD PTVYVNASGR PEVFARSNDY LSGVITSNPV VISNSDGRLE VFARGSDNAL IITSDPAVHI NADGRLEVFA RGPDNALWHI SAPTVAKNSD GWLEVFARGA NNALCHIQQT K MS intact mass analysis abundance 4000 3000 2000 40462 i (unlit. [MHj]3' L 1U00O 20000 30000 40000 50000 60000 Post-translational modifications Isotope labeling Matrix adducts m/z Folding - direct evidence of 2D structure * Circular dichroism (CD) • Difference in absorption of left and right circularly polarized light by chiral compounds • Specific shape of spectra for 2D structural elements * Infrared spectroscopy (FTIR) • Specific absorption bands for 2D elements * Nuclear magnetic resonance (NMR) • Behavior of atom nuclei in magnetic field • Presence of defined structure results in distinguished peaks in spectrum 200 210 220 230 240 250 Wavelength (nmj Dodero 2011 Unfolded Folded ■ , a - 4** t * • 0 9.0 8.0 7.0 1H Chemical shift (ppm) 9.0 8.0 7.0 1H Chemical shift (ppm) 100 105 110 & 115 1 u 120 I to 125 z in 130 135 Balbach 1996 Sample purity Contaminants - co-purified molecules • Small molecules • Co-factors • Ligands • Salts, imidazole • Lipids Saccharides Macromolecules • Protein isoforms • Proteins • Nucleic acids • Polysaccharides • Binding partners Sample purity - methods SDS-PAGE UV-VIS spectroscopy SEC (SEC-MALS) FFF (FFF-MALS) Mass spectrometry small molecules Co-factors Ligands Salts, imidazole Lipids Saccharides macromolecules Protein isoforms Proteins Nucleic acids Polysaccharides Binding partners 10 SDS-PAGE Polyacrylamide gel (8 - 20 %) SDS - uniform (?) protein charge (composition dependent) Reducing agent (optional) - (3ME Staining - CBB, Silver, Fluorescent, Radiological l- Sensitivity Coomassie staining 5-25 ng Silver staining 0 25-0.5 ng 0.25-0 5 ng 11 SDS-PAGE • Check overloaded as well as underloaded sample UV-VIS spectroscopy (200-) 240-340 nm • Trp (and Tyr) has absorption peak around 280 nm • Detection of: • Nucleic acid contamination • Aggregation (scattering) • UV-absorbing contaminants Nucleic acids arbre-mobieu.eu 260 280 300 Wavelength nm Scattering 340 2*0 796 500 120 J40 Wavelength nm OS - *J 04 1 05 • 1 02- 1 01 • 0 ■ 320 340 13 Size exclusion chromatography • Separation of particles based on "size" • Interaction with matrix possible (!) • Usually coupled to multiple detectors (UV, MALS, viscosity) 2.0 E+05 5 10 15 20 Elution volume (ml) Field flow fractionation • Separation of particles in solution by external force Field Flow Fractionation Outlet to the detector Separation field Parabolic flow profile Diffusion Separation field Field of force Techniques r Thermal ThFFF -1- Centrifugal Flow I T Electrical SdFFFor CFFF 1 Magnetical FIFFF (SF4) EIFFF MgFFF AF4 CEIFFF HF5 Mass spectrometry • Detecting of exact mass of particles • Various applications based on set-up • Intact mass analysis - protein and non-protein contaminants Sample homogeneity • Macroscopic - precipitation - visual detection • Microscopic - oligomeric states, folding states, microheterogeneity - biophysical methods Sample homogeneity vs. purity Various methods may evaluate sample in different way o 0 CO 0 • 0 h —^ ■4 CP o Homogenous Good sample Sample homogeneity - methods • SEC-MALS, FFF • Native electrophoresis • Light scattering • Analytical ultracentrifuge Native electrophoresis • Possibility to observe various oligomers (relatively imprecise and unreliable) and isoforms (2D PAGE preferred) • Not efficient for aggregation detection Light scattering • Interaction of incident light with particles in solution • Intensity of light at given • Typically red/infrared light Detector Light scattering • Dynamic light scattering - size of particles - sensitive to aggregation (a) (b) C(q.r) • Static light scattering - mass of particles - averaged value, separation required IOOKCelPress Med Clinical and Translational Report Variation in common laboratory test results caused by ambient temperature Ziad Obermeyer1-3'4'" and Devin Pope?"i L---m- Methods are not identical • Results from different methods usually vary • Ideal match of values (e.g. Kd) is unlikely • Some methods require specific sample preparation and conditions • Know method principles and limitations !!! • Know your sample !!! Biomolecular I nteraction and rystallization Core Facility Josef Houser I • +420 549 492 527 • josef.houser@ceitec.cz bic@ceitec.cz bic.ceitec.cz MUNI CF Head: Michaela Wimmerovä • +420 549 498 166 michaela.wimmerova@ceitec.cz