Srovnání generalizačních algoritmů Petr Šilhák VectGen •Asi nejjednodušší algoritmus na implementaci •Vstupem je tolerance (může být také velikost kroku) •Pokud se body nenachází v tolerance, tak se odstraní •  Ky2tracnJz5+fm4uLizs7P29vbx8fHu7u69vb3U1NTp6end3d0AAADR0dHk5OTa2trHx8d8fHypqamZmZmQkJCjo6OKiorT09Nx cXFISEg1NTVQUFBpaWlBQUFfX195eXlEREQnJydlZWVUVFQmJiYwMDA7OzsXFxccHBwRERG9/bcQAAAWWUlEQVR4nO1diZqiPNN N2AwBBGRfGje0tXV67v/u/qqANioo9Ixjv//HeZ6ZVpAkHCq1ARXi5WTjGpRI7nRarjIiEYmR/z0s2S5fxUVZrJbE8fLVpCjTV4 /p3yMu+DErcqLwvcSXyyTfsOjVY/rnYM47jVZZXma7cF4mwEdu5q8e1D8HZdQgFmUmMQizCJEohQ3/a2D01SMgrx4B9K9y9dV49 Qi4SmLptbCkxDRfPAaVKC8Xx8mLpwQFDqYvHgP7KSxQ+rUBPkomjM2ulRb8Z+BQnzbSH8OCgUQICIsR50HsF25mTMOpamqcqqET +88a6o9hgSgmE6A6sqAlK2WTr9NoHoIvtdnkSbZM9v//WUiPc4HlDGV/OimCIpqr8cbd7FIt20zlo5rTJ8VYP4YF6p42BCgL/kT buHoY+aoUJaEXBpHqbkLyJIfy57BwqReqPbWqJNVu9LSfM4Yfw8JLxzCygBhZQIwsIEYWECMLiJEFxMgCYmQBMbKAGFlAjCwg/k ssPG+c/xUWINZ84k2L/woLjISR++A338d/hgWasuRpY+jLAn3atOw5I8jhA4ThxXlHKuX2c0bQjwUjm8sH2XttrokSPls/ZwQ9W GCMRLNM2eXTqfSUMfRkgVmHbfSctF8fWaDWqlT0+Khz3X/CEHrPiLlGtsZTZmUPFmiYHFRdn5apzvkzLEUvFijJY5+qyVOU00MW GJWKTSFrGgiDwrn/BInswwKjvPDAa5lLL2GBspC/K1zTtOk+1YJnGKteshCsfQc0VPwUg/2IBUoLbZ+CKAAL2dr+LgdMTbqfHnz MAqPmwQqIOQ3Z+vtXgXXK8UNZ8FOYCUiCpivbN/LN+eBkXth57GMWKFt6rhRwjbsT9XsjIF934Nv23GchSMJjjPNB17hul9+VBX 89WStds6nHjIgyyX2DMei6s/3+nAzTDlN/nwVm7ab5PgQWdPjnkJ33HWGglOzfiLQqGG08KNHo5T4LcIhWEI/zSiAT3tZGH7DEm bRPigcseJr+C4QAu1dBM6Zp+K0RTFJiMMIXQXsvj2QhWINM8mpayuH2OyMQWOZbvXXHHRaA8jwLVxtFF7IQAo15qArnbYhAQDP+ vIqEnHlsO7edPWCBSUffm1QkAAtKoX/LUDGSJYQVG0puBfIOCwwugB5/KFX/CgV5PoZwhEF9NuAePqNkW/la0Hmk57fe3yNZKBW ZT3Sthpxv5G/NS3cNh1H5YN8efW9GeKo83deSqKFe2XCRa8mzIXqakjQ7f3TzlN3kax6wkG6mcirzehzadGPl31KQHw7Bvq15Kl k3Y+xgQSLObqrFa6WyD+gzhgUhpr5bvuu9WUDhC5aNDWXLVbzDAhzOt6E+UavpoGlcKw6pRQxwI9kALUnx2p2+JFFy9YxWtyxQM A3KOwQQ2DdIkakevXSxj809+PN9ZwRlRvppNdpfmbc/6mYBtr59wHXIdCEJXNdVm6/Ej/nXWfUZB7WX5y7MPHVoPxaMPOZyup9i 9xwMJJ34+wgtxALdn95XgXpezBoTsbgWRtLNAuox+7cqy1k8FYpxKkepuYA9QbqfBf1fXsBHco7W1yAm4umdix+0sQC/8XJQRB9 CEjn6O9TbxPA74+g51gDdRMnq4oWTASzAIKxwkYIsTmRxLWAgflAqSnEswmwXmn0TwjCZ9T1vdJGFN6NsZYHYqsyVokDNzDk+A2 oIj8dfuH4aDZiPEP9cuBiDZMGdloWu86zWCtnO8vhmmaDjsiLSrZrthJ/JQUMg+7LgrHQu6wcZFZLunDbbya+oWCdDWCAkvnjMe hOIzhiyetrWJQuhnm4VReMQzIFAKJkDNiZJRaohJ+YgY5mumh1k109+d+iFUIVuS9E9D+rdjKRW6VnxpEXB3cEFC3aa2i7ABgV1 Po1WFqgl8+wXaEY9QdUo62UIc4SBBEBUkZA0d66PuIfg4t0fjV931spCAiToGcSSYCO9sy6kDlgYdhz42OMFC6Ga5mme51HCk/u yEHCd/1bRKmRgpvSJbeKdIYCUlLukTNRBWS+vqZyorF3tbmOBebky5cp2ghmmq8AhTBMyLJq5nBFurRcCJdmjkKFAXLGAzbOQ69 NFgjMyAXnU80mtBCjlfjrxvHJYBtRryoKR54ED8NXcN+tw+5aFQAYRUPJSwTDqyuFNzUIa5rmpTRZYPQ3A2JBgnxuVkriSBQg4Z CBhV+B8UGMQB8063SEEu5FCHLEfeHPkggU/0/ar3Wq1K/yI1a1esUCJVELspMvvIJI6vw5+mKoftMv3BKT7b14J/5nWMfVJjKqv MuYc0I5csRCAIpjmS5yQ8kRWskii51mJ/zn5auDLXpd6wfbqrTzd+zgYds0CA90B5kEuNuCp8LZQWMrnQeNxYGp4mdk5JGrEsW6 Jc22J5Mxi7/vs4l0ZSk2M3/TsY4r6gGdyfuOfhF5qDZMFt83FwhZAIBlK6PWMyDUO05G/47S4tqviUEbcsjDPx1AjfbuXdcjzpJ xHYRh5bU1577MJuZAFn0PgpOufVQA50VbeLX3x5HCt5u/D27Vuxpb5Qb+aEUCKnoNt1sFKTmU+7WxVOcZCkERT6S4m4koz6sQ3X pEQXfv4QdtfWp7MsiYLEL2IfPc8F/ZRzTtMgZRvwQ9iZymRHN6d3qU0VTgVrLdMJBaVjhQ2ZcHwdXSUtGwNqpF33pCDFpOFd0pn Ru5SEeaTksS/OVfo18/XiZe3J5qoRb9mBDoJIpmxKzCI0+WSd1gkaHR/KZB22j0tSZ5G63nimXmr1L6tZ4cmC045FX7aIpty7nQ 3C3usVVmztAAnokpImkvw6hrSLZRauCzDKjTqaOtLO/oQK2hTbZrOZV2XdTWitCOhgo3BKMmpNxpHOTnd3L++rYxeBgzOW82Mdv 2gzGZnFuDYDF0ETcn3iv7YLQkPE2wi2OCNVB86kt5dum447PDBTN8fenmCBRAZ5lXxs5Z96DLoaDV68KoWTd69ytqAGxGXOjEEC 3F4c644YcN9qeV6e4O+fGaB0qzKa+kfEEt5j7J74FPGv+AqTxS04u8OcT98Sp2PhocR7tagW0zjvs8vWIAmpnXv/DNGIx1R17x/ PxCOKXc1x6VDDmG1sUyLm5866WduYfjyMAfNpimOY8qjIuTh42gF9eFmL68tPNxZqAdhvsIS+YEPZnaMfNIjU4osgDGrk8xcOaa Kpsgbh/V5a89bT7A7hgneozBDq4xgzFEPUfDolcsWc9c8ky8WTC5X5uk3mOq+d0W9yOGincypPRORBKJeOec9Aw5GEiKFvJIEru w2ujaNwL1+63E80J0dwPeysXNp8UZoCQbLfLdO4g0KLFl0WZpzK18sGLtqHMo+n/K+ERv4G7kk2nHSU6Z5nrmTIz4N1jPgAFlw9 FNiEX1GXU4Vwoygx+GoW6XNPtzjtWbOMZ3reOsjOD/04u22OhjI+5PyzIJBJirmtfg0XijaHzymAHbPX8dDnnphJPPrLLsuq++y lk3QdRlwA8gujepethJMqi2THE20ma03fR6FOrPAVEUXt1+0Y6Z730p1n1oMI07YgCQI6oXaPOj8Q1V4jokt3+kduzIa1t6IEWl 1k2Xse7u1avYqL3F+k1DL0URjUmOvK/QPWCAXYVMfIAtMEWktZZtqGzHDJLv/LbCv3529EhqGO/GIJu1zLidZAFGob89/aPpzHu LqhLARklAKq1WYWsLU+t0RWh9QNxlQWqZiwSr3HHU05+lupw/KZf0FVL4j+I1yOo9sIpIONPijJ4cYo8aA2BtZkEk4m83n2/V6P d+SgVmcv4Dag7Z19RN8NXQGDeZ0u+9PALIAkWUcOlNZlqdKtrnrXjwFpziimJ0eWqLMbn3S4VmoZAE1iKVAWM/l8FlvU3ej9qCd 2Sz0Hdt2/SAIjIHZzT9Dw2uiHj6x8oIKbidZyCb/vu8KZxYwqAs08Bn/ffWmmoVeNu05aMYRoKfdV4zjK7/wE1ggLc+6/Av8tLd EXkLCj2PhNRhZQIwsIEYWECMLiJEFxMgCYmQBMbKAGFlAjCwgRhYQIwuIkQXEyAJiZAExsoD4GSy8ujY4IS9LPp8RkhTfQnkdpr qcy/oLB4BICTdeWqjeMKVEsl46BMY4UZ5T4KI38HnH1y7nQ9moHUcbUWFkATGygBhZQIwsIEYWECMLiJEFxMgCYmQBMbKAGFlAj CwgRhYQIwuIkQXEyAJiZAExsoAYWUCMLCBGFhB9q+WfXup/BvqwQKn3xAf2e66cwEJ83ZdKlu///aH0koV09r2qjr3Qc0YEs88g DKca5x0FDP4EvVhYzxbDaoYNQZ868ZTQza+FXBfbfAULjBQpUd/dZ93I67VmAIlX8XssXosXBf7+MnrIQrJxSOAcnvWMQR9ZIN4 yYMl+KuPbt+rff/P2cT3ocBdQygK6HFLfcwD6sGC9h5KfLKr6s/zvv3r7kAV/YZvwJzBJET1FRfZhYfHmMivKS/E+Ov/7S7s8mh Hm4g1FwZDATmXLZ7wK/3jNALLh0DtVlENVNuV7byDfO8u7LMCO1dS3xEgCwyDhuqWu9uPuafeCAaQHCyTemDgJYiVfoTBwefAQS PXOaicesJDkJBDViIjlQjvB4mH1oLZWnLe7ux/MCHtOXGQx16fvuo5VlAYOQMDsrgP2aEZ4JRaFrLzXEP1Hc84Hs8DI++ymjtwX HlTLB80oWaLYR6jLUSEKtwx+/gdkMQ3uFMe8Uw8arv9ComdVZInqGqzIyYDStwiD/Posul3w+yxQNvdIVVPP55p+0GRgoaWK733 A8Wmy7bb196pi07VLzhWLKLGrwpLpakhhcESWk3jdaeTvsUCxMjxxqyoxdiJPo0LhWCx9UP/IZbCnxirqkoZuFgyy0UAAznqNmn 6lIfS12V85YAXnA/x1j2Fnbbx7LKgbQuvp5KS6pm5z+RumksEFhR7Uhdv+IvcdvZBEwP+53g/FmjVUnNbbu9v7fWiYPGtR+0kq8 /bI+O6MsOcMrBOtfheCLJiR1lr68gHyDCsrEmeekDYl2c2CNwf63fPZUmr5VbFV+LRoXxCjBZTkiTiMksm8dVZ0sgBXzToYRKpr EVAaKXJyTHRdBxaGKEjWWDQgX6YtktRZId35YNRoloWUbFGkoVIK+6RvrQh3fv7ofXrDVtEgWN7Vr+u5gYLTdKyCisXusiEJD2o sak0CtmIVtlzBzgrpB5caVtNjf4MmQDcEVSPRqmdtrMW5DSoE8qazO+tHRCphUnDimzrKPFEUZbKb+VFvM4W/ixrmXdm0/KiLhR JOln3JDpyBRSzfdaWqpCaorW2P1Qvg+qmNL76RlzdHdbEgNCNj9olsRpVdIefbzzKf5V5vFgzmT5qFZ722pcNaWWAk22AEZZ33U GvqvTkSkb4KvIW4PsiDIVBv32zdlYjy27+aS52y8LZG59s+7zHz/Nc8l33vl0PaF0xqHQLJvWa13rA3CySc42Jh9tdwqYlloZn1 VWQOpOPzjkdYt/5uNUMIy4BZtoivh9m+coK0sOBU7XNdXerkCdbjfvuQhvhtEATmzXF6bWXFWliA8zugCraN5jbs2Qkal4ASY67 ekwYMBtWL/Y5QdMXlQpcdLLAlXgT/qx41KGwfRhQuaJz2qbt4boherFfWugDILQtwokd0lk33ervvMvetsRHc6e7av+Jh9411kR 2r68PFi6bJ7JgRUYYnAC7K2XkFdUzDyTZMNn58/es7oyCXLLTW6G5hAXxGvFbuZcVREE7Pd50mNXCxk/LOAKyD5Fz4KG79zT80/ J4WFqB7VZSPdS8jBinIknn69qkOqrZHl83WJztLlIx3c/drhZ4bFnAeifLFQZu0B9f96wur1SlFHsuQWBcsSEHg+q4XuHaZnud2 myxQey0WGAsu665SMwIHNM4GVvJZNr8UzscSsD/Shsm8XTkhXIo/LYkExiSXXl00Giy6loxUI8IuZYGeYPn5/lRt/pYFCGYPIlS 5Lqsn4hj1kw28R3TBgjepjn1Lo9IXF5C2rJzgYFlh0ERtyyMI23nxa/hibuW2+ID6axitcynSZxqIqR68SknerpxAyRy1OmW3Ve oJdVXuD5SFecd2e53W60lcscDo9k18b105mjEXFLdxtc0oW/IXlC5RmqzOewfUO1aHtcyISKS7aWC0sMCy/KgMy/Qsrjiuxo0pu OxYKahrWShUEai4Vks/WPzR8hx2vZFGq9sfT1IRgXUlROASONGuqmB8yUIVTcMHsytPJxVClr98BgaavIsXg2QcvSZcUujWyzBX K0mEZg0WwGcUdsRgd5YLsTx6sUgRihRfShceIYP5gF9hStiBb7CO1Gc43+MyYhcVzEADb0ktjp1jsJc5a8gf19NOx4WRJFzuI90 loX0TiKIaXM8LesECRNOiZwqGvWsElEm238g2weTF83m/yP9QdvQrFuACQPihdNT5jmY7uFiXLEhYVRvOSfK7xoDbtXVjaQld35 waoNfpA0Yt16Au3/xW0hvBRC3nzmZSg4Uqz4icGsE99YNWFEOI6ieOFVRa/csFgB1pLHazioagI0VGnQxP9bKa3darkjlBt5Qjx KoqlbRQZ7WJq36ZO9ncrv0I1Mb7PM/brgVjstdcPwJ8xiqIpO7D+6GObdWLPr2Bg4fDlZaZEwofAP7ZyxMf1Azc+/cVr/TChlfC 7fgPvHPiLzf1ODOd7HXRBFV5i46yV2uO90TaipQLqpv1HVequAo9agDDBfa96jAwGkKNMbLbExF/wc6PU6l4x/OlB8naizUDcJV cYb9FLHnvONynHFRxGntHmCToXNm6K34KUyrVweLFxj2fb3tbJxbgX3y6D9kjVkF9G6IrKuFyJJaLizdZWWlhuMXIRhdOv+Q8EI NrFmAaHOvkjdPrlqyUitVP16hODgFqCzj6cJIibMou3rPH2bkvFuy6yD1zehWqx5K5tkUdA5n0A+LB5dcXHspouBOpZ8/t5e43Z cF4t0jlxfRasBkvwL60klx8+ojTEmMu//10LI0PBXq2D52s84wwP09r7PXM8ILzYPgBzAsKdjMILdQJAS4/xH4xYgWej1LRv068 kMt6pQlK3vrwV+FtZomUAfVUtRIgmFVoyu3NIev5wEfFAsjxwa+/+20OUxeMK5G3wCldeX7g97+7/bVmAIlOb76zIXccwkgV0iz lUX3SK04Nvlx5pG8Z2boeNCniutK+EQypbn7VCSjCcrbHFaMHtHFaM6DWjAh3yDrN9SgqXS9adIp0nkmEPFCwzTYECxD/1TbDsY aEKvTmqzYrhxXyPbMAmrHagHfB+h/f0qKTpsOe+qlY8JYnPSo9zCU+atDuv/aEwGlGmKcMFCNDxLFtCMx3hlVZFysnYDh/ksXB9 4Ov0Bk0dOHEwt6rXE3CrD9YTaVuciCQhXAZ1JH/n4vC8BFULHjl18NjL1kzAMIJ13V813cc1/73VakrFn7NYhyC77gwln8+BmDB nBeGZJqmBP9J/75SfbV+RLJ0IEaH2WS8olDNz3gmHp/XYiIF+Lo68WyIef/rOFnKV14L9vpKReNbImRkocLIAmJkATGygBhZQIw sIEYWECMLiJEFxMgCYmQBMbKAGFlAjCwgRhYQIwuIn1Annv4IFrSX5tvE4vKvzrgxmaTyVHkp5Gj62hFM5fT/AP6COTQ8/JgyAA AAAElFTkSuQmCC Ramer-Douglas-Peucker •Asi nejpoužívanější (implementace skoro ve všech softwarech) •Rekurzivní algoritmus, který hledá nejvzdálenější bod spojnice bodů •Parametrem je tolerance vzdálenosti bodů od spojnice • •https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm#/media/File:Douglas- Peucker_animated.gif • Visvalingam-Whyatt •Počítá trojůhelníky u sousedních bodů •Úpráva je méně viditelná •Rychlý na velké sady dat, ale nerozlišuje spiky a celou délku linie upravuje stejně •Vstupem je tolerance velikosti plochy trojúhelníku •https://bost.ocks.org/mike/simplify/ •http://bl.ocks.org/msbarry/9152218 • •  vr39/ff39/n5+fv7+/y8vLr6+vk5OQAAADa2tr09PSWlpbHx8eenp60tLSrq6tOTk7W1tbFxcWlpaW7u7vOzs6MjIxmZmaIiIh/ f39WVlZ0dHRnZ2dHR0dbW1tQUFB3d3cyMjI8PDwvLy85OTkmJiYxMTEZGRkNDQ0gICBYg6niAAAUqUlEQVR4nO1di5aiuhKtAhJ AkEdA5aHIQ9t2zr33/z/vJsFWVECwx7HnLPaac1rlkWKnqlIJSQUAghCsLQMkKP4h+OEGOIj4hyD+yf8AWDybW36WAz9N/pj4gU XgXwG3BM/3kryIfZulRZaEG7Uqk6CqnLxgq2q9L015or5P1pqX/Ko8Zifhfh1lu0OKb5b+d6GwSuBPpNk5S6LguNIOq8BgFWR+p O0iP1qxGHTNQahSfb8lJVSJt9EjbausmAX/EhbUgwfVSt0ti3J20Her8BD7FttCxtb6IlLDRJAQOADZAqoCC6jgUDhrvYwVz363 8L8JyFUBU39d0FUEebH3V1miWsFqf/CLPFMcxYl9fhavcX48iGkKG0gDt8pzvYr3/xZNaMd6U9KuY8rHv/rRG7B5K9BxiM7+qCQ T/gSiQHsvwvDNAgQRxPhmJCq8VwAIQHm3KqrLd0ug/AAS1HdLcEcCdn55FX4OCfj1vIiXJ0fRRDZ/eAl+CgnYCAjsy8e6g+i+WI SfQoKTyS+izqMK66dH4pcHE3GxZvqh8F+nDj+GhJQl3s4jRaUuxFiCs873FNY0jkDNoFKK4IXu4aeQoM+z2RrWac4qtuTPaykrn +ACFA8SBrkfs/R1LPwMEhD1/UKveI+JOZGnmgi6xxiFvREGpl7AIjZP9vIS/BgSwiRilUfyKtH0jYHSJ4C9XUNFs+1KryrjdaNo P4OEPgSvH0L8+SS8PEr4G0j4A0HjX0DC6zGRABMJEhMJMJEgMZEAEwkSfwkJBF8ZM/0lJODVqMvvxt9CQsT0N5Pw0vB9mE/w7Be OqvwlJJBduXqvJlAveln5g0hwcc3i8nUiPCYBIbG91wkwhASy/CRq6r9MhCEkLLcvrIXH4wkAcR5DYi1e1qseQkI1S9XXeaVHJF CqO7wSfLpPXuWaBvgEZQNWCZ1TRr6Lh5pgaumKc2EY21eJMICEA0XI1DdpAiJJjEV93t55tgxKAHtq8REJBDTG/1gvq4VHJEAE6 6WogRXo62fLQCcNew4/IIFHCJ/SHTxfC4/wwBwc21lLCVQCa+PJMjDWM7PbrT00By8WF5Pna+GRT+8nIVGgtOQnDdEpgD5nltk+ OyadgjwiwT3KPwiF/bRX0DyrR/ZeEmgCq039UUUC2ydjhVVluk6x6Tr8iIQ8qf8SJ3+ufA6msx5t6CGBIEMsTy/mFSSE+SoZ3U4 ipaWCwCAo9fYeQC8JBO3qLP7WeKoL4aJ7VIoUOq/tI0E1hV+ur/RN7hQ8Nj5i4YFOEgOxbN7SM89qOaOXBIStfv6y5P7piTdiXI cThODQ6dM6SUCIdaDHL+pdAzwugu4v7WScCMHGMrk9hpS4GbT1APpJUBvzhpPAeyps1FLRRlsHrePqLhKQupw9L/j6bibRL1NM3 mEbf8RsMwTzCCEn0o21OFGqVYs+9/uERUN5ktCTKzJGjfAQmH2cZEnXit9mE52aYPN2aVaer6BeloAVraviwMwRIkClQ2wFsW35 Fpi5qY0kQUkbX/aamGiMy9kYEhB2J4MiEAShOZgEisQnBLKT5s9cYPuFt8tjqm5HWYMS5n6gCOdKMEbIuUbB7YzpHhIoHNzLjLL VXswjclkyfKGJcOThxQZp5rVpUTsJiIxS5AEzfn31IF/y0FfZQdByfic8g4FWT4FCy+Ek4H1b1acJYXQ5e3ZAMKJt/l+Wdl9wCw p22Sgw04eaA/LozBZxgX2avwYry5Zhm7YGFo9ppfAYgiPbJhQhuFg9NfPFwG3jnB4S8NdXu8a9exmlh1yBjUcUZ6gMSFilN9pGr 7V5ayGBX5KI+E7NT/dBJvRZj90oI57ljerRrsm5WUSXRztcBCu8buh6SEjPwqEZ+JnwyDnXJEzowNgVZ0GsN76nrWW1agKukBey sOqCqG/IIpk2L9ZFNm720pqyMwkY/JJ3xJXenBvZTYJ5GU4iGEXiFlUIhFA6dMSRQHgl72AS0BTFiYEMIjvTp9YAvSTioYsJgUW GRyxrd8XDTHk+YmTkzOPIk6ihol0kEMhvjrhYKTATNbK0hxqE0wxNkMkujFz72HiGNk1YmULiUlY/AfU0Z4u4RhivPKB0zDymIr GF+ksJeDeGBanv6EG0aPStO0ng3carR3W9KjJsX2qRYg1k4YoEYLVbJ8RtXt4ywVuRHa7wVFnMOnFGYf3BaiON7MGBW8F9mFMvG xT8i06ZGvP7s+N5GV07CfyKyrguxoi5UhKnrst4oAhXJNgRi2NFUVYb1hycuCOBWL6IMclR2AJF3zq302bmMx56JoplJoZgaIAU WAXCnGlT+ZA4muLOqo1ZRwytJIiFuvu7B9I+lXOXXHtcurymSYKVpiufQ0m19QzOMt2RoMfyxWMaS1Ei/Wz/ZMN9beysM8NUfMZ sva0zdAt7K25vLZuECQUjy9DQDrKMTk0ozVuzI6AUXwsxMdHvrmnDFQnk1AtGU08OF4u8JoGrQCBl5H5ZXKCcI2QK6emzUoqrbU dPHG3pq24qoh+5xvp6JJH/QiEihcfjZSe57zMg70ps46CThNbOkslYpvHmQRzyT26hr3uNnIQuD+YtnNO1N5qAYf0geSIqLGi8h vXOfgBZyQ1KEaLjzFCFkRn0pFtXBSLYiaYvo2LrZd5dvM/vT5T53OgwB/ho6yeho7NtqFAhPTk73G7wZrnoPGhss7rWbkiojZ1r sfgTN0w5TM6lIcyKtQuGUq+x3+UazJR4qdkY1qyjaSS27+txylZ2rBhKNk/Z/XJi4Sczr10TuOfU2gZB+CXWNq9UveZQ/qZ7zvW lV+czY5200oTCuj7ihFyTQHHl1AVVImqOG/deBjednk92Eh4XwBtv6UWTUPUSXywrNg1KiRVInvWsDMDqMeAWEhDdf1prmLM+30 ByWPuEe21lKfQ2BHbqk4k6uVYfRI0lbFumYardmwVXqHK+vyYBeQQg5MaEH0Ct6dLJ9YsDfiQ6JJZodEWXbrGSEmfZvm6GpSiG8 C5usMul5fXobKs5bLpWmQQxtz1g5T7hhSSij6lWu5OgaHk378nEI/AfzPXcaAky+dHV/5QmCULi00fhl5NHo/w0W/uOeDHEPy+W vGwe1cNCRnKilkJVKMFOo6ebd6OFBGJs2y7h5uefZJztK82GmXDKgeJv5WQaHsAQdk2CrMik4LqqtA0knHAhgYJ2UqWYG2po9ck twB3vbh+CfD9Fjrqd86gerCPKQ0ZCMdjmyyEBTZsmFE4bCdzTstMn3r/bbR0weVWteSS/lu26WXrljU/gPJXpo6jmTAKKVwso6+ xIQdf7XpzVYvAzlf+k2cy0qKFXvEUTRqDUHcWVnZUhhUEB1R0JnN51q/LgbHMe4eBlBb8q6uu4rbtJSMyjDkF25U/Vqqqfj/RZ5 EUTkloWbu0hbxsfyy5hhp6uJnaie9oqiGeU+3seyUXedj18NtYtCVzabevAMNKbHqybfnpJ4okrvBSNX7zNgL2Mp2XNu9FxMySi u5BgJyfrdQ/gOI/04ASKunXSNOEM7MCJl4uw+GQur5ihw6H35lB3YO+xurZRXoC9K9O6Lc3SrQWEIj0YtexqvovpsEkVJxJ4U/J VrufHy0GXyuvufrA9iw28+IR7Eg4jxm28erwOHe0UHxsH7gzNcJcN1eYzCTT4innNrWN/Y8kPt+dw5GSKOxKCMfOTZorsFSPRrV O52j7ItxoZMbNGksB9jPUVgu43gwfw2iDisJEc3pCA8DlqRB3rIUxyfh3hG6kjU0SNIgFNhffwCRERkX989argO1yT0Hzj8xSQs qFjDV8QJDjzf75ySmRK39vb1+BGE2aH702OQjJ65qcgwZ6v9USRSINXLghuBycBL3lq3P3rJgt2QfqExlse/ZVTudvBScjmTEkc jmXi7V82Sa0T9QpZPAdiw4K83wpOQjFPAy3U+L8o8v64U/ohiz7wEiEaxp+uhB9CAl71tf98bsMfQcLV19evS77DzyPhDZhIgIk EiYkEmEiQmEiAiQSJiQSYSJCYSICJBImJBJhIkJhIgIkEiYkEmEiQmEiAn0HCD0he/e405nK0+b0SxLB5azJ5jtR7c0r9YPN+c3 B+gDm8nYTJMcJEgsREAkwkSEwkwESCxEQCTCRITCTARILERAJMJEhMJMBEgsREAkwkSEwkwCASXjy18e8gASAZtKLrSfwlJKjzX y+UYFga8+FL257AkGy9+jx/WfmDE9rr8etWIQwhYeO9cEuyYSRQ8JyRufdGYAAJRgUf5utmfg/L5Q7F/nXbqQ/wCWsHquGLNUdj mDk4eTByxecIPCbBKQBS//kMrY8wrHXY2lDiuzJ4U9hZCIn3ZhJEsh8tfFsud1+slSfVbFQeyDEYktUfyhmKtCEvwiMS8FMu+d3 B4FRj97B6k8sO0YQ62Q/73sLVbjwiQavdUbbU3aeXR33O+xKDDNGEo4yUyKt2WHhEwqf4H4ISgvp0sHL8VfUQOICELxXwlKcXab laT+jfn7dZJDGXMAswevKi9ICKDKXJh9O5zu4xCfRQ/0X+4VkSNLsngWK/JpjnfR0WQJ9MaW+X/PnNstOeH25yAZvTCYQ31c9xI HLFcgm62th+ErJzxrncwGc2YuKlHk257jfLO2rxEQnEKE9ahPilE2NBzAPnsnI71LGXBPuyq4MWz4Ynx7gAIa0T9hFQfrWr0kNz qL7y24pMSp3J3Pqx1blGJcdV+9FeEopz5aPdnmr3ARCcUzJ4frHx2SrDo00ulsXlM0S+I5P7jEmozs89JU4mRUbbsjd1k4CEB8x fVxA8UIpo6ro2qnx6aOwtYeUbvDfLfhIIbC9iI37Ep/QdIyoEwTp8nR4vwpbkCH2awMO0sybQnWnZqkGTcVsLZPFlxxzUQVvc77 fxQBNWl+3VRXp++YWNWNwvUqwcznkTeSsb35/TRQLKZLmXr4GnmRRdZ0wbRSDJG8+MOgHnfr+NXhIQykZC10BItPTKUHEGSyEev JGZ125LjtiZqPY6xQzSJTcrc5xfQPdXM78nisibbj24rsZ+TQjZRZWWJcZ5mapV1JJbsVMIK9w1as5uGx/q1ASR++sCgrQCY+yw xnplXZNA+BOx7bVT6SGBm/7h8tnzF1Vo8H4UPz+ZdV1zd490FjZqbhwJs8NNo3oITNNRh3cmCcQZaSalIDqVfjH5uBqi6dUE75I Rl7JQtC6zgyrSsfftaHQtRny1h5U7hgQZpze/G/M5p385YszX/IBZkwQRbQnPTtxd8xH6NMFt5PUjaPKwy/rQRQJbIEO3PUEomr VJ6izEeOXfu0gwd7c5X4s0r7QxrdNOB7fZa0FX123DcGzD3uwvN+rThP1lcJWHi5lvKR+2vpRduWDgu5AbEqDWBNHOX37tSlmct 4ztorU5bIyBNQAR74RfhSZY7y/A/0dt72h9ObweEoxGTSBsP4CFgQt2rY0DkyEhrJsSB1nt2JxmYvkOEvTq7ll5lOYuQS22wSAW xM6G4F4lqiFfqwooQeWfL3Pr3PNFZKs9X4qgMwc2bJsuVZkMHo1wUNjGg4vmozDruN1ud1UJezinlO9IWdyekxFcroluWIoce/0 SECjFA8yMrkEIdHYZUJlbs1MTGlEGkllaJ1hk/9WMcDkTiUIf5i+tn+WKBP3kjuyQlWe30q4JSWuXT9Sh41Aezu8XGu03C0+Oir pdPU/hIFkpme4mYXdpighuvrKcKiWPNNTQ8WeaO2AbHk7CVX1dzp/lBa0fsy1lMcCxvRkW3owuxYsYEixyp36atkymoO/kfXCmO 8ZdQvT6HF6VH/9RekhoRqyw+VIpdM30H140NRMltd2Lo+kAhbJzM4jks96XqS1bLwQ9+7rwXpQjTVXffIS8g67cl8Br53+XYShq 6l1eJJt7PSQcG6bk6WcHyS05OW5EanhYxrGy5IQ4PS0Fhn770wi/At6H0MZWczj25JwSQszqFh+CskjMy9KZSzi8Vy5dL+Isuxw D9UXK+lYSiNje4fzFuelxuOmHLzPz8jsvHaadO1T3764xiPZl4SVUCdp2aTGq/+xaSWAPNy4gqlOroL4pmVJvHoGOY52S6fl1L4 XTRWz90YBU1xZInxeviLe2z3tii5yIfOvioJkVZ2Mxbne/oISH7rznM4/DlqgfwZz/t40E9/EYFkFXBtBcGFytS5GSHWwT9DpxP j2cKobzYj4MrjrMwbtJbnl9F+GVfvEzuB4it3r/qwWYsfAmfZxsBw1voXkdu7pxue9III1df3ph69wjUGFSVnpITZs/LpHDPpCL OEaOwJB+pyXRTsLs+FAAq6h4HK/yUvcygbaQfVnlN2+JuAirRSFDv05J7pNXW2V/43c5U7eJWeuhnlTblRjP1DkHishlzU3VHDY G1U7C7bY7dyDcMarcuwfcfDnpUS5+9A+uf7PFqeV9eGZtUp3PdW8OvPhhA2iIs6VfnzpTZyb7TA3g2sHrEC09kc53CJttJJCWiL UV6daKQb6Y8ngb4ItPab3TFVdJCsRfD9ls9I6Eb2wWy9UhVs2tqvc1WXdo2wfqMsLcDwL2ImdiTJzCZsMq+WOpCy+KQglKsRnY4 xvdkbB7esdeLrYZlfMPfdwwZJsmJPuhw3gIkRjzEk+aWrF8Y8m78OLrqlh3jLDf4TZlsXq36884OPNi5KuyNhLKERMB0KsDClQ8 +c5YbNDjzLxjOnwc7JaEb2aORqBjhuQFWkhQRuxECF/7ixD86qxD5ovXLC3D+x24MYfA+16CUt63GDup5n4zLB4wf29KisfG2TQ nQdmca5+9ctZmB+41gX1zXg6hwzYLO4OTcJzv8hrr+fw9eZsBz06cN63Pv4D/wsjrOQn+5X2O97ppcp2Qyaut/PxiKNm/alZOJ6 RPaPiyb1bBE5CaEM7n20WNNfzxmpDpRM7fxu9h/n3Uudwv456qN2jY7Hfihyz6wPM2x/gGbfwZJOD52XF46/778DNIeDMmEmAiQ WIiASYSJCYSYCJBYiIBJhIkJhJgIkFiIgEmEiQmEmAiQWIiASYSJCYSYCJBYiIBJhIkfgIJQ6cRvAzLJ9e9/j6swFPejIi9W4L0 /8PH9ENeCJoxAAAAAElFTkSuQmCC 5. úkol 1.Vyberte si libovolnou sadu dat (linie i plochy), kterou srovnáte pomocí třech výše zmíněných algoritmů 2.Použijte implementace algoritmů podle vaší volby 3.Zkuste měnit nastavení algoritmů a pozorujte jaké výsledky algoritmus vrací 4.Nakonec srovnejte výsledky algoritmů s různými parametry mezi sebou Výsledek •Krátký protokol, kde bude popsáno jaké byly použity implementace algoritmů •Popsány budou také výsledky algoritmů při použití různých parametrů •Nezapomeňte na ukázky upravených linií •Můžete navrhnout automatické porovnání výsledků •https://web.natur.cuni.cz/~bayertom/images/courses/Adk/adk8.pdf •