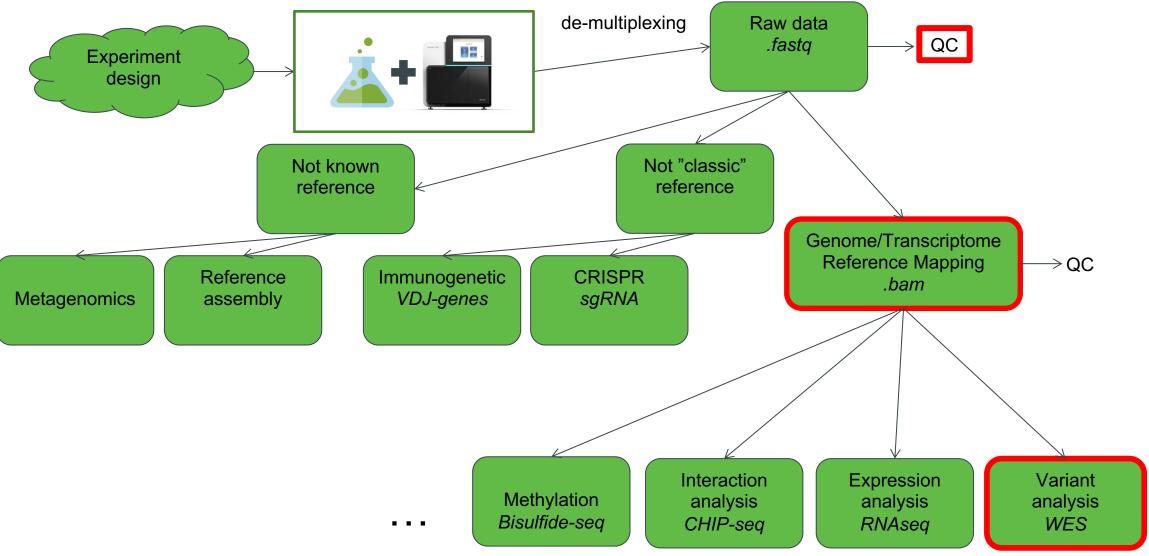
Central European Institute of Technology BRNO | CZECH REPUBLIC

Modern methods for genome analysis (PřF:Bi7420)


Lecture 3 : DNA re-sequencing + Small variant calling

Vojta Bystry vojtech.bystry@ceitec.muni.cz

VENSIS

MANA

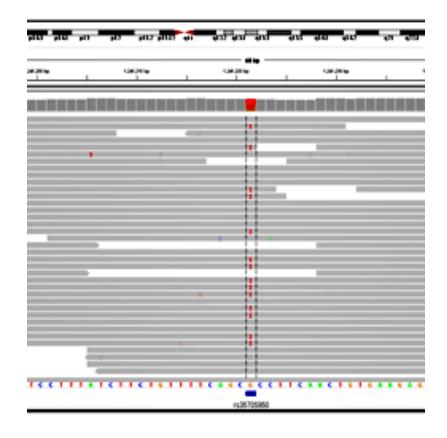
NGS data analysis

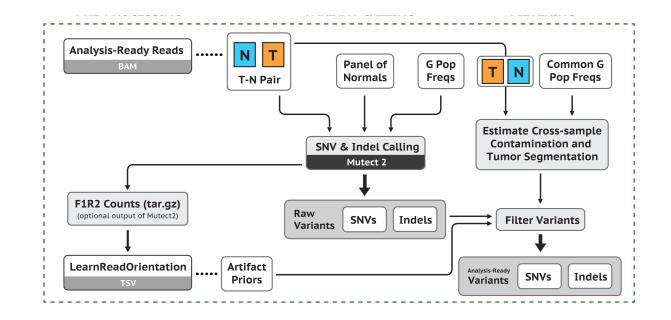
DNA re-sequencing

- Variant Calling
- Medical genomics
 - Cancer genomics
- Small variants (SNV + small indels) vs. Structural Variants
- Germline vs. Somatic

Mapping

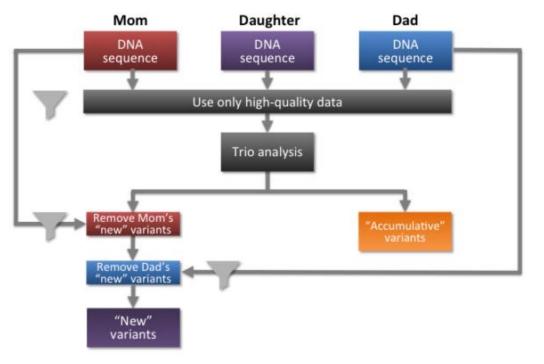
- Computationally most demanding
- More or less standardized
- Output .bam
 - .bam = binary (ziped) .sam
 - .sam = Sequence Alignment Map DNA re-sequencing
- Tools
 - BWA DNA
 - STAR RNA (eucaryotic)

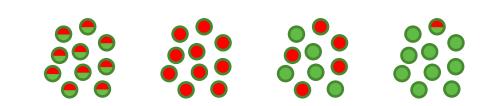

Mapping QC


General Statistics

🖫 Copy table	Configure C	Columns	II Plot Sho	owing ¹² / ₁₂ row	vs and $^{16}/_{24}$ co	olumns.										
K Reads	s Mapped	% GC	Ins. size	≥ 100X	≥ 500X	≥ 20X	≥ 30X	Median cov	Mean cov	% Aligned	Fold Enrichment	Target Bases 30X	% Dups	% Dups	% GC	K Seqs
100 827.9	9	<mark>48%</mark>	176	<mark>43.3</mark> %	0.8%	93.2%	88.7%	89.0X	111.8X	99.6%	43	83%				
ups													4.7%			
														<mark>26</mark> .8%	47%	50 603.
														25.4%	47%	50 603.
100 523.1	1	48%	178	<mark>42.8</mark> %	0.8%	93.2%	88.8%	88.0X	111.2X	99.6%	43	84%				
ups							-						4.6%			
														<mark>26</mark> .7%	47%	50 460.
														<mark>25</mark> .5%	47%	50 460.
84 081.9		48%	172	<mark>33.</mark> 7%	0.5%	92.1%	86.4%	75.0X	94.4X	99.6%	44	80%				
ups													4.5%			
														24.4%	47%	42 202.
														23.3%	47%	42 202

Small Variant calling

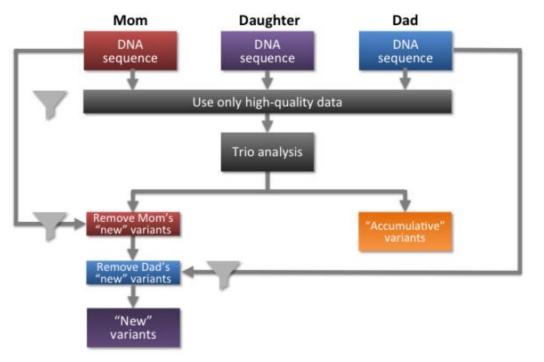


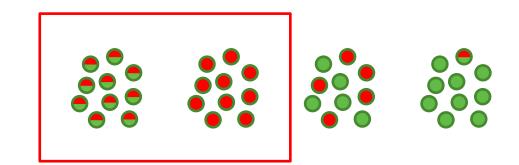


Variant Calling - Germline

- What you have from birth
- Family trio sequencing
- Predispositions

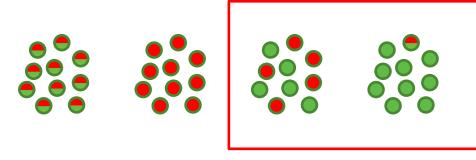
Family Trio Sequencing





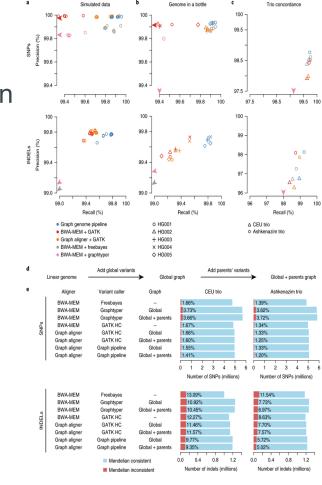
Variant Calling - Germline

- What you have from birth
- Family trio sequencing
- Predispositions


Family Trio Sequencing

Variant Calling - Somatic

- Diagnostics / prognostic / therapy decision
- Tumor normal paired
 - Somatic variant calling without normal needs high coverage (200x >)
 - not all germline variants will be filtered
- Expected variant heterogeneity
- Expected variant allelic frequency (VAF)
 - Histopathology prediction overestimate tumor load
 - Negative correlation to the necessary coverage



Tumor purity estiamtion Tumor composition

Variant Calling - Tools

- Multiple tools:
 - strelka2, verdict, mutect2, somaticsniper, lofreq, muse, varscan
- Ensemble/meta callers usually outperformes individual
 - SomaticSeq
- Benchmarking
 - Genome in a Bottle
 - GIAB
 - son/father/mother trios of Ashkenazi Jewish

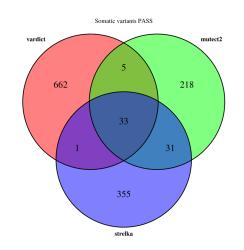
Somatic variants PASS

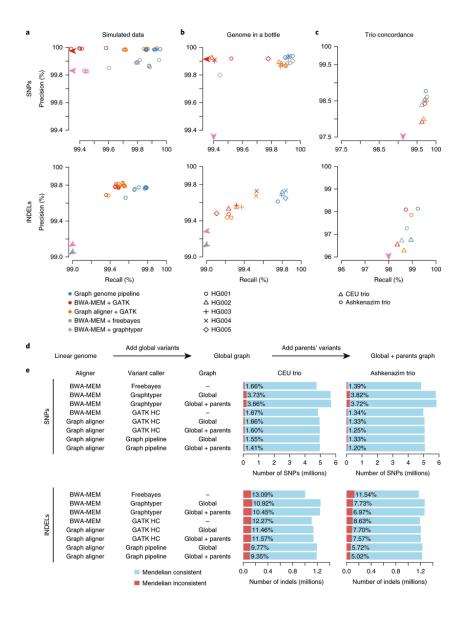
355

strelka

mutect

218


vordia


662

Variant Calling - Tools

- Problem is variant filtering
 - Complex regions
 - Pseudo-genes
- Sensitivity vs. specificity tradeoff
 - Preferred sensitivity
 - Preferred accuracy for automated processing

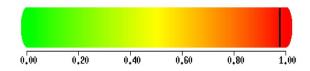
Small Variant annotation

- VEP variant effect predictor
- Transcript "selection"
 - Refseq vs. ensemble
- Population frequency
 - 1000 genome project
 - Gnomad
- Many clinical variant DBs
 - Gene based vs. variant based
 - snpDB
 - COSMIC
 - clinvar
 - CGC

Small Variant annotation – functional prediction

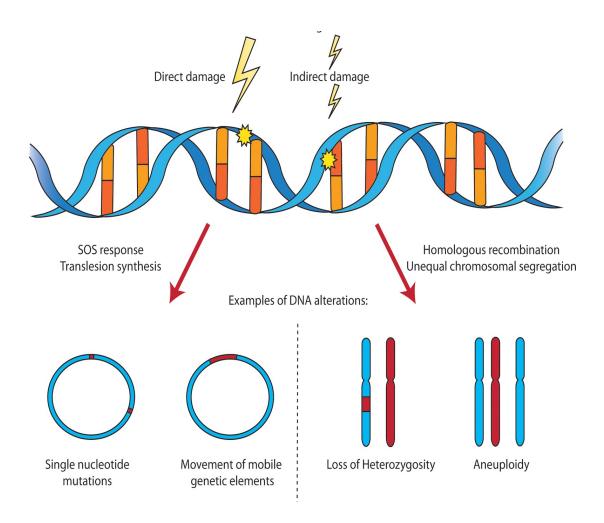
• General variant consequence

- Based on the position
- Impact


• Effect of the variant on protein structure

- PolyPhen
- SIFT

POLYPHEN-2


This mutation is predicted to be **PROBABLY DAMAGING** with a score of **0.976**

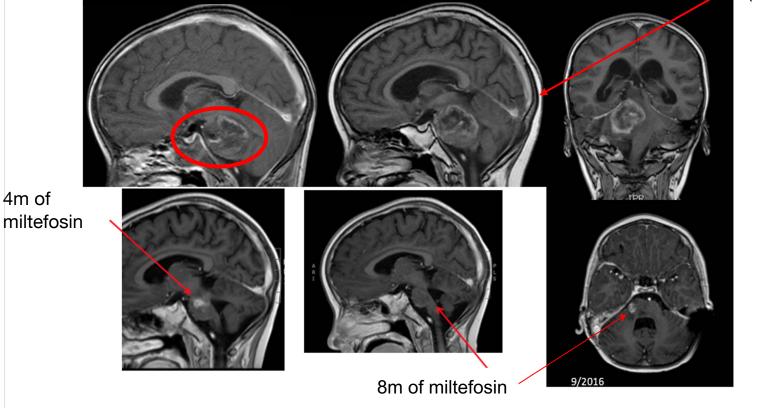
(sensitivity: 0.76; specificity: 0.96)

SO term	SO description	SO accession	Display term	IMPACT
	•			
transcript_ablation	A feature ablation whereby the deleted region includes a transcript feature	<u>SO:0001893</u> &	Transcript ablation	HIGH
splice_acceptor_variant	A splice variant that changes the 2 base region at the 3' end of an intron	<u>SO:0001574</u> &	Splice acceptor variant	HIGH
splice_donor_variant	A splice variant that changes the 2 base region at the 5' end of an intron	<u>SO:0001575</u> &	Splice donor variant	HIGH
stop_gained	A sequence variant whereby at least one base of a codon is changed, resulting in a premature stop codon, leading to a shortened transcript	<u>SO:0001587</u>	Stop gained	HIGH
frameshift_variant	A sequence variant which causes a disruption of the translational reading frame, because the number of nucleotides inserted or deleted is not a multiple of three	<u>SO:0001589</u> &	Frameshift variant	HIGH
stop_lost	A sequence variant where at least one base of the terminator codon (stop) is changed, resulting in an elongated transcript	<u>SO:0001578</u>	Stop lost	HIGH
start_lost	A codon variant that changes at least one base of the canonical start codo	SO:0002012	Start lost	HIGH
transcript_amplification	A feature amplification of a region containing a transcript	<u>SO:0001889</u> &	Transcript amplification	HIGH
inframe_insertion	An inframe non synonymous variant that inserts bases into in the coding sequenc	<u>SO:0001821</u> &	Inframe insertion	MODERATE
inframe_deletion	An inframe non synonymous variant that deletes bases from the coding sequenc	<u>SO:0001822</u> &	Inframe deletion	MODERATE
missense_variant	A sequence variant, that changes one or more bases, resulting in a different amino acid sequence but where the length is preserved	<u>SO:0001583</u>	Missense variant	MODERATE
protein_altering_variant	A sequence_variant which is predicted to change the protein encoded in the coding sequence	<u>SO:0001818</u> &	Protein altering variant	MODERATE
splice_region_variant	A sequence variant in which a change has occurred within the region of the splice site, either within 1-3 bases of the exon or 3-8 bases of the intron	<u>SO:0001630</u> &	Splice region variant	LOW
incomplete_terminal_codon_variant	A sequence variant where at least one base of the final codon of an incompletely annotated transcript is changed	<u>SO:0001626</u> &	Incomplete terminal codon variant	LOW
stop_retained_variant	A sequence variant where at least one base in the terminator codon is changed, but the terminator remains	<u>SO:0001567</u> ള	Stop retained variant	LOW
synonymous_variant	A sequence variant where there is no resulting change to the encoded amino acid	<u>SO:0001819</u> &	Synonymous variant	LOW

Cancer genomics introduction

Cancer genomics introduction

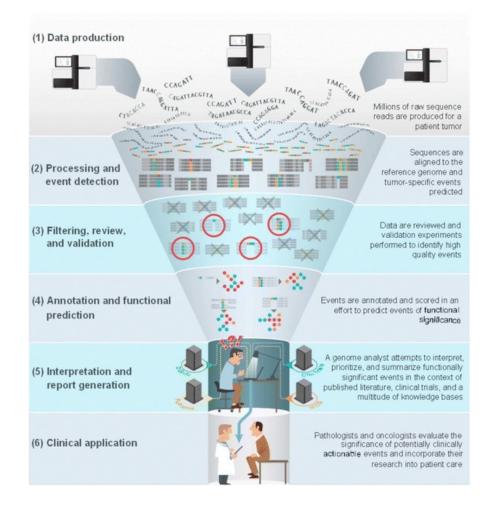
- Based on molecular state
 - Classification
 - Prognostic
 - Treatment selection
 - Precission medicine



Cancer genomics introduction - Case report

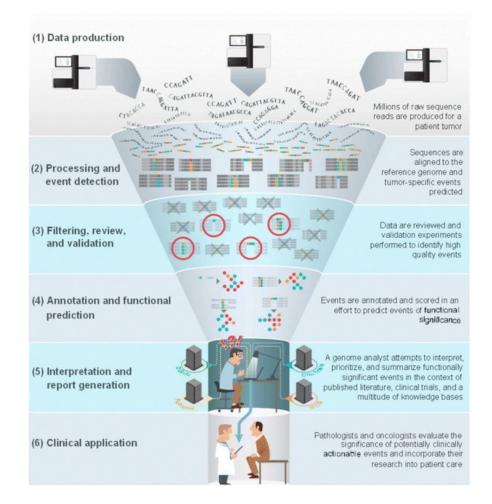
- 5 years old boy with diffuse intrinsic pontine glioma (DIPG), 6 months of standard chemo/radiotherapy > tumor progression, only 6 months to live
- WES identified activation mutation in PI3K kinase -> Akt oncogenic signalling pathway 6m treatment

At the beggining


Miltefosin/impavido (only approved Akt inhibitor)

Leishmaniasis

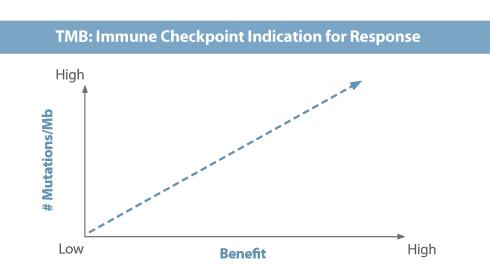
8


Somatic variant NGS data analysis

- Primary analysis and QC
- Variant calling
- Variant annotation
- Variant interpretation
- Clinical application

Somatic variant NGS data analysis

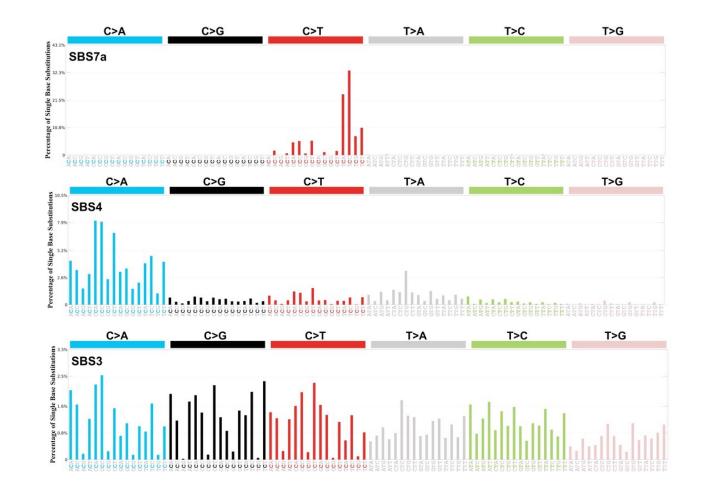
- Primary analysis and QC
- Variant calling
- Variant annotation
- Variant interpretation
- Aggregated feature extraction
- Predictive modeling
 - . . .


Clinical application

Variant interpretation – derived informations

• Tumor mutational burden

- Several definitions
- Mutations per million bases
- Good indicator for immunotherapy to work
- Microsatellite Instability
 - Specific variants occurence
- HPV status



Tumors with significant numbers of mutations resulting in altered proteins (neo-antigens) may respond more effectively to immunotherapies.^{1,2}

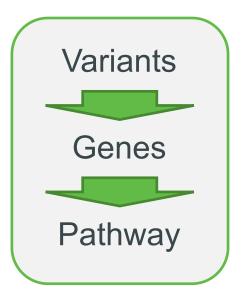
Variant interpretation – derived informations

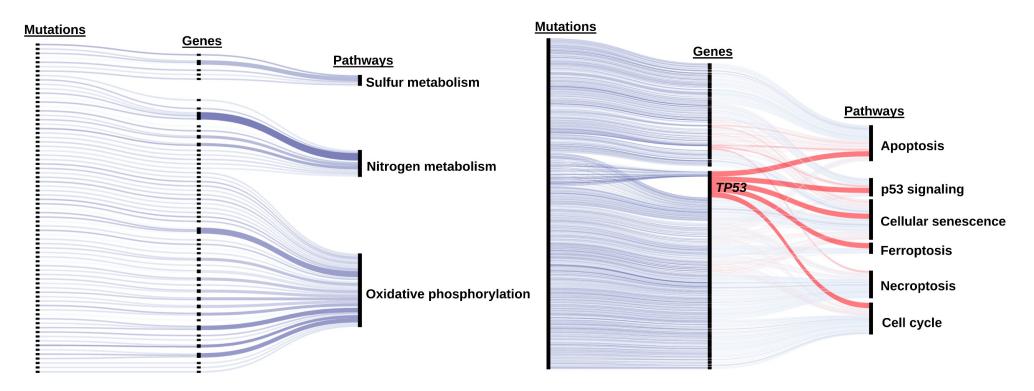
- Tumor mutational burden
 - Several definitions
 - Mutations per million bases
- Mutational Signatures
 - COSMIC
 - exposure to ultraviolet light
 - Tabacco smoking
 - Defective DNA damage repair

- Genomic variant data are very problematic for modeling
 - Enormous feature space
 - ~ 100 000 features
 - Limited number of data points
 - Only one predictive label per patient
- Feature selection/extraction
- Increase number of samples

- Genomic variant data are very problematic for modeling
 - Enormous feature space
 - ~ 100 000 features
 - Limited number of data points
 - Only one predictive label per patient
- Feature selection/extraction
- Increase number of samples

Curse of dimensionality


- Genomic variant data are very problematic for modeling
 - Enormous feature space
 - ~ 100 000 features
 - Limited number of data points
 - Only one predictive label per patient
- Feature selection/extraction
- Increase number of samples


- Biologically meaningful data extraction
- Usage of publicly available data

Curse of dimensionality

- Pathway level "disruption" score from gene- and mutation-level scores
 - KEGG pathways
 - Mutation effect combination of CADD, EVE, Polyphen2 scores

