Central European Institute of Technology BRNO | CZECH REPUBLIC

Modern methods for genome analysis (PřF:Bi7420)

Lecture 5 : RNA-seq primary analysis

TANA BRUN Vojta Bystry voitech.bystry@ceitec.muni.cz

NGS data analysis

The RNA-Seq workflow

Alignment

- Mapping to genome or transcriptome?
- Genome
 - Requires spliced alignment
 - Can find novel genes/isoforms/exons
 - Information about whole genome/transcriptome
- Transcriptome
 - No spliced alignments necessary
 - Many reads will map to multiple transcripts (shared exons)
 - Cannot find anything new
 - Difficult to determine origin of reads (multiple copies of transcripts)

Alignment

- Our choice is the STAR aligner
- It performs genome alignment
- Offers a lot of settings to support splicing, soft-clipping, chimeric alignments, ...
- Other techniques (Salmon or Kallisto) do not use alignment per se and can give you the gene count information right away
 - They use only transcriptome as a reference and are very quick
 - Drawback is you see only what's in the transcriptome and nothing else

Duplication removal - UMI

- PCR duplicates
- Optical duplicates
- How the tools recognize duplicates
 - Maps to the exact same place
- Problem is it could be identical fragment not PCR duplicate
- UMI helps
 - Maps to the exact same place
 - AND have identical UMI sequence

Post-alignment QC

- Number of mapped reads unique + multi mapped
- Mapped locations intron, exon, intergenic
- Duplication rates
- Library strand specificity
- Captured biotypes
- Contamination (rRNA, non-self)
- 5' to 3' end coverage bias

Post-alignment QC - Tools

• Aligner report

• STAR - most direct assessment

• General QC tools

- O RSeQC
- O Picard
- O Qualimap

• Feature counting tools

- O featureCounts
- O RSEM

• Non-aligment tools

- O FastQ screen
- O Biobloom

Note: Gene body coverage

- Often, libraries with high fragmentation (and low RIN numbers) combined with polyA selection might have strong 3' end bias
 - This is a result of polyA "pulled" fragments
- Some kits, however, target only the polyA tail or sequences close to it
 - An example is Lexogen QuantSeq which sequences only one read per mRNA molecule close to polyA tail

Source: Sigurgeirsson et al. PLoS ONE 2014

Feature counting

- Now, when we know our alignments are solid we need to get the number of reads mapped to a gene (or other feature)
 - From there, we can calculate the differential expression
- The question is, how do we summarize the counts
 - Do we want only uniquely mapped reads
 - Do we want also multi mapped? And how do we assign them? All? One random? Somehow else?
 - And what if we have multiple genes which overlap each other?

Strand specific library

- We can basically have three strand specificities
 - Non stranded/Unstranded not very common anymore
 - Direction of the read mapping is completely random (50/50)
 - Forward (sense) stranded common for target kits and "bacterial kits"
 - Direction of the read mapping is the **same** as the gene it originates from
 - Reverse (antisense) stranded "default" for Illumina and NEB kits
 - Direction of the read mapping is the **opposite** as the gene it originates from
- In case of paired-end sequencing it's measure by the first (R1) read orientation (FR, RF)

Feature counting

- The regular settings are summarize reads mapping to exons (-t exon) and sum them up to gene id (-g gene_id)
- Other possibilities:
 - Count per exons
 - Include introns
 - 0

Gene counts - Tools

- featureCounts is build around the "classic" read to gene assignment
 - By default, assigns only uniquely mapped reads an only reads uniquely assignable to a single gene (but both can be changed)
 - Gives you raw read counts per gene
- RSEM is efficient in counting also multi mapped reads and can estimate expression of individual gene isoforms
 - Tries to "weight" the probability a mapped position of a multi mapped read and assign it correctly to the real source
 - Gives you estimated counts per gene as well as per isoform and normalized TPM = Transcripts per million transcripts
- But, there is a **big differences** in the **minimal required** "good" aligned reads

Minimal number of reads and expression I

- RSEM is less precise in low read counts (<40-50M reads) and for low expressed RNAs (difficult to estimate)
- For lower read counts it's safer to go for featureCounts
- Our best practices for a minimal read count for each tools:
 - Less than 40-50M aligned reads (to the good stuff) -> featureCounts
 - More than 40-50M aligned reads (to the good stuff) -> RSEM
- But if you want isoforms!!! -> RSEM

Feature count results

										complete.featureCounts							
lome	Ins	ert Dra	aw Page	e Layout	Formulas	Data	Review	View									
<u></u>	X				✓ A [^]	_ ▲	_	* *	ab	-					🚈 Inse	ert v	Σ • Δ_
٦ř	·		ri (Body)	× 12	▼ A	A —	= =	.0.	ab c♥ ▼	General		×	🗄 🎽 🕂	2 ĭ ⊢∕∕ `	V Del		Z Z
Paste	[] ~		τιι	⊞ ∨ <		E	ΞΞI	← = →=	₩ ~	0/	• -0	.00 Con	ditional For	mat Cell	Le Del	lete v	Sort
	< si	В	I <u>U</u> •	····· · · ·		=	= =	<u>+-</u> <u>-</u>	₩ ×	ri v %	9 (.00		natting as Ta		For	rmat 🗸	× × Filt
			C														
1	T	XV	fx Gene	eid													
1	A	В	С	D	E	F	G	Н	1	J	К	L	Μ	N	0	Р	Q
Genei	id	Chr	Start	End	Strand	Length	KO1_rep1	KO1_rep2	KO1_rep3	KO2_rep1	KO2_rep2	KO2_rep3	NC_rep1	NC_rep2	NC_rep3		
ENSG	000002	1;1;1;1;1;1;1;1	; 11869;12010	12227;12057	+;+;+;+;+;+;+;+;	1735	0	C) (0 0	0 0	0 0	0	0	0		
ENSG	000002	1;1;1;1;1;1;1	; 14404;15005	14501;15038	-;	1351	155	144	1 13:	1 140	130	150	260	160	186		
ENSG	000002	1	17369	17436	-	68	8	10) 9	9 7	7 g	12	21	20	18		
ENSG	000002	1;1;1;1;1	29554;30267	30039;30667	+;+;+;+;+	1021	0	C) (0 0	0 0	0 0	0	0	0		
ENSG	000002	1	30366	30503	+	138	0	C) (D C	0 0	0 0	0	0	0		
ENSG	000002	1;1;1;1;1	34554;35245	35174;35481	-;-;-;-	1219	0	C) (D C	0 0	0 0	0	0	0		
ENSG	000002	1	52473	53312	+	840	0	C) (D C	0 0	0 0	0	0	0		
ENSG	000002	1;1;1;1	57598;58700	57653;58856	+;+;+;+	1414	0	C) (D C	0 0	0 0	0	0	0		
ENSG	000001	1;1;1;1	65419;65520	65433;65573	+;+;+;+	2618	0	C) (D C) (0 0	0	0	0		
ENSG	000002	1:1:1:1:1:1:1		91629;92240		3726	0	C) (0 0) (0 0	5	0	0		
	000002			90050;91105		1319	0	C) (0 0) (0 0	0	0	0		
	000002	-,-				3812	0			0 0) (0 0	0	0			
ENSG	000002	1			-	755	0	1	L	1 0) () 0	2	1	1		
	000002	1				284	0	_		0 1	-	0 0	2				
	000002			139847;1403		323	0	-		0 0		-	0		-		
				143011;1430			1			2 4	-		7				
	000002		157784			104	0	-	-	-		-	0	-	5		
	000002			160690;1615		457	0						0				
		1;1;1;1;1		182746;1832	,	570	0	-			, .	, ,		-	-		
				185350;1855			91	-		-	-		177	117	127		
	000002			185350;1855		68	0			0 0							
		1					6			7 E							
				259025;2590						,	, ,	0					
	000002	1				385	0			0 C							
				358929;3589		1095	0	-		•			0	-	-		
				365692;3656			4	-		4 1 D C			8	1			
ENSG		1				363	-	-		-	, .		0	-	-		
	000002	1				995	0	-		0 0			0				
	000002	,		489387;4899	•	2477	0			0 0	-		0				
	000002			491989;4932		1239	0			0 0			0				
	000002					104	0	-		D C	-		-	0	-		
				586358;5863			0			1 1			6	2			
	000002			587701;5877		635	0			D C			0		-		
ENSG		1				372	4	-		5 5			-	-	-		
	000002	1				1044	2024						2904	1545			
	000002	1				1543	538						860		644		
	000002	1				89	3										
	000002	1	632757	633438		682	18	15	5 19	9 21	20) 17	31	17	15		

Post-alignment QC - example

