SCEITEC

Central European Institute of Technology BRNO | CZECH REPUBLIC

Modern methods for genome analysis (PřF:Bi7420)

Lecture 6 : RNA-seq differential expression

NGS data analysis

Feature count results

AutoSave ● OFF																
Home Insert Draw Page Layout Formulas Data Review View																
		ari (Radu)	v 12	Δ^	~ =	-	×2 ×	ab.	Conoral					🚈 Inse	ert 🗸	$\Sigma \sim A_{\Box}$
		эп (воау)	* 1Z	• A	~ _	- =		c₽ ♥	General		<u> </u>	₩	⊿ ` ⊑∕/		ete v	Ξ, ZΥ Υ
	Paste B	I U v		» ~ A ~	Ξ	$\Xi \equiv $	← Ξ →Ξ	₩ .	(iii) v %	9 ←0	.00 Con	ditional For	mat Cell		ete •	Sort &
	Formatting as Table Styles												× × Filter			
A	A1 \checkmark X V f_x Geneid															
	A B	С	D	E	F	G	Н	1	J	К	L	М	N	0	Р	Q
1	Geneid Chr	Start	End	Strand	Length	KO1_rep1	KO1_rep2	KO1_rep3	KO2_rep1	KO2_rep2	KO2_rep3	NC_rep1	NC_rep2	NC_rep3		
2	ENSG000002 1;1;1;1;1;1;1;	1; 11869;12010	12227;12057	+;+;+;+;+;+;+;	1735	0	0	C	0 0	0	0	0	0	0		
3	ENSG000002 1;1;1;1;1;1;1;	1; 14404;1500	5 14501;15038	-;	1351	155	144	131	. 140	130	150	260	160	186		
4	ENSG00002	1 17369	17436	-	68	8	10	9	7	9	12	21	20	18		
5	ENSG000002 1;1;1;1;1;1	29554;30267	7 30039;30667	+;+;+;+;+	1021	0	0	C	0 0	0	0	0	0	0		
6	ENSG00002	1 30366	30503	+	138	0	0	C	0 0	0	0	0	0	0		
7	ENSG000002 1;1;1;1;1;1	34554;35245	5 35174;35481	-;-;-;-	1219	0	0	C	0 0	0	0	0	0	0		
8	ENSG00002	1 52473	53312	+	840	0	0	C	0 0	0	0	0	0	0		
9	ENSG000002 1;1;1;1	57598;58700	57653;58856	+;+;+;+	1414	0	0	C	0 0	0	0	0	0	0		
10	ENSG0000011;1;1;1;1	65419;65520	65433;65573	+;+;+;+	2618	0	0	C	0 0	0	0	0	0	0		
11	ENSG000002 1;1;1;1;1;1;1;	1; 89295;9209:	1 91629;92240	-;-;-;-;-;-;-;-;-;-;	3726	0	0	C	0 0	0	0	5	0	0		
12	ENSG000002 1;1	89551;90287	7 90050;91105	-;-	1319	0	0	C	0 0	0	0	0	0	0		
13	ENSG00002	1 131025	134836	+	3812	0	0	C	0 0	0	0	0	0	0		
14	ENSG00002	1 135141	135895	-	755	0	1	1	0	0	0	2	1	1		
15	ENSG00002	1 137682	137965	-	284	0	0	C) 1	0	0	2	0	1		
16	ENSG000002 1;1	139790;1400	139847;1403	-;-	323	0	0	0	0 0	0	0	0	0	0		
17	ENSG000002 1;1;1;1;1;1;1;	1; 141474;1428	8 143011;1430	-;-;-;-;-;-;-;-;-;-;-;	6195	1	5	2	2 4	13	3	7	1	5		
18	ENSG00002	1 157784	157887	-	104	0	0	C	0 0	0	0	0	0	0		
19	ENSG000002 1;1	160446;1613	3 160690;1615	+;+	457	0	0	C	0 0	0	0	0	0	0		
20	ENSG000002 1;1;1;1;1	182696;1833	1 182746;1832	+;+;+;+;+	570	0	0	C	0 0	0	0	0	0	0		
21	ENSG000002 1;1;1;1;1;1;1;	1; 185217;1854	4 185350;1855	-;	1397	91	112	81	113	89	90	177	117	127		
22	ENSG000002	1 187891	187958	-	68	0	0	C	0 0	0	0	0	0	0		
23	ENSG000002 1;1;1;1;1;1;1;	1; 257864;2579	9 259025;2590	-;	8224	6	6	7	6	7	8	29	18	18		
24	ENSG00002	1 347982	348366	-	385	0	0	C	0 0	0	0	0	0	1		
25	ENSG000002 1;1;1;1;1;1	358857;3588	8 358929;3589	+;+;+;+;+;+	1095	0	0	C	0 0	0	0	0	0	0		
26	ENSG000002 1;1;1;1;1;1;	1, 365389;3653	3 365692;3656		6204	4	1	4	1	1	5	8	1	5		
27	ENSG00002	1 439870	440232	+	363	0	0	C	0 0	0	0	0	0	0		
28	ENSG00002	1 450703	451697	-	995	0	0	0	0 0	0	0	0	0	0		
29	ENSG000002 1;1	487101;4897	7 489387;4899	+;+	2477	0	0	C	0 0	0	0	0	0	0		
30	ENSG000002 1;1	491225;4927	7 491989;4932	-;-	1239	0	0	C	0 0	0	0	0	0	0		
31	ENSG00002	1 516376	516479	-	104	0	0	0	0 0	0	0	0	0	0		
32	ENSG000002 1;1;1;1;1;1;1;	1; 586071;5862	2 586358;5863	-;	5495	0	1	1	1	3	2	6	2	1		
33	ENSG000002 1;1;1:1	587629;5876	587701;5877	+;+;+;+	635	0	0	C	0 0	0	0	0	0	0		
34	ENSG00002	1 629062	629433	+	372	4	6	5	5 5	3	9	5	1	6		
35	ENSG00002	1 629640	630683	+	1044	2024	1897	2056	3331	2541	2414	2904	1545	1820		
36	ENSG00002	1 631074	632616	+	1543	538	427	447	579	418	453	860	494	644		
37	ENSG00002	1 632325	632413	-	89	3	2	1	0	0	0	3	0	0		
38	ENSG00002	1 632757	633438	+	682	18	15	19	21	20	17	31	17	15		
20	ENICODODO	1	C22741		207	2	2			2		2		-		
	complete.fe	Complete feature Counts +														

Differential expression

- We have our raw read counts but we need to find the real differences
- We want to figure out the change comparing the before and after treatment
- What are the changed genes? Are there even any? Is there even difference between the samples? And what about the experimental design - paired samples - does it affect the evaluation?
- The tools for the differential expression have to account for different libraries depths, model and "fix" outliers, account for different levels of expressions, and many other things
- Luckily, there are few tools that have all of this and can be used

Differential expression - tools

- DESeq2
 - More specific
- edgeR
 - More sensitive
- The important part of the calculation is the **design**
 - Assignment of a group/condition to a sample
 - If the samples are paired (the same patient twice) we have to account for this as well!
 - Technically, the pairing of the samples is a batch effect so it is similar to have a technical noise in your data

Pairing of the samples/batch effect

• Paired samples are not the same as paired-end sequencing!

Pairing of the samples/batch effect

- There is a bad experimental design and a good experimental design
- Very simply more randomization gives you better results

 $\top \equiv \subset$

The Problem of Confounding Biological Variation and Batch Effects

Pairing of the samples/batch effect

And example pairing of the patients AND different sequencing years - double batch

 $\top \equiv \subset$

Differential expression results

G1 \clubsuit \times \checkmark f_x KO1_rep1_normCounts

	С	D	E	F	G	н	I	J	К	L	М	N	0
1	log2FoldChange	pvalue	padj	gene_name	KO1_rep1_normCounts	KO1_rep2_normCounts	KO1_rep3_n	KO2_rep1_n	KO2_rep2_n	KO2_rep3_n	NC_rep1_noi	NC_rep2_no	INC_rep3_noi Ki
2	-2.13814843577763	0	C	RASSF3	69.2462658512546	69.8847837776367	75.31983231	16.10750934	16.19579735	17.01093187	39.31190292	37.94880318	39.31509600
3	1.55863508011381	3.15044331526357e-309	2.19381120258379e-305	PLAU	83.1780779077663	83.5038967608087	82.09580228	237.8156269	255.7166174	248.0778164	117.5961299	109.3366659	113.1547931
4	-1.62683585832331	2.67845548579999e-298	1.24342831835788e-294	SLC36A1	88.3586480206321	89.2083474848266	88.67070489	29.43962332	29.16066689	28.57256401	46.87319032	48.72098551	48.18577103
5	1.30139182511156	1.76418769716443e-270	6.14246051460225e-267	RCN1	133.621557413121	128.297517206234	132.7245630	323.2228858	328.1552536	332.8423990	193.5146249	197.9954682	193.1395388
6	1.2630850795779	1.02089445414276e-249	2.84359941256924e-246	IGFBP3	2486.81813222656	2480.06783875938	2333.547543	5989.933215	5946.039019	5792.253383	3831.625795	4132.736918	4179.558122
7	1.51267681217244	2.45760497122124e-212	5.70451073903304e-209	MEX3C	21.6717076434627	20.6286409946036	21.83591508	60.27545782	62.82816940	62.15931257	50.61987615	52.34453495	48.96216158
8	1.45013017412421	6.53192478167081e-211	1.29957309191899e-207	LIPA	120.20573839574	112.804986826613	118.9313422	313.6537312	319.2238990	340.2393572	300.2781919	323.4608678	326.6952326
9	-1.30650792865875	1.30934153213199e-192	2.27939993975028e-189	TMEM245	116.862103502177	111.752505143215	119.2731567	46.04091467	46.83816362	49.49953258	90.92787681	90.80536143	94.10844619
10	1.09960201635484	2.17678313377643e-176	3.3684509671227e-173	SETD7	94.0345714510628	90.8291692772598	95.78848936	202.8762937	203.5484518	202.1006449	129.4813871	136.1588091	133.5887316
11	1.27833505522101	2.86957786645544e-168	3.99646109461249e-165	RCN1P2	23.0752087098965	23.0493488664193	23.66562803	55.76331196	57.97148811	57.62168275	34.43328784	32.74979745	34.98713165
12	1.06309728758472	3.66004260013096e-168	4.63394666291126e-165	ARPC5	129.493613100081	127.181886621832	134.8156635	281.1152001	275.4931882	270.9110039	239.5162297	237.3424888	3 231.0670432
13	1.34234143977455	4.21847608866044e-166	4.89589304056449e-163	NRBF2	16.9658511265965	16.7765580333664	18.03574201	44.01470578	44.65677287	44.21599101	39.22134858	39.83935072	41.04958553
14	1.37893895771298	4.59426664975081e-166	4.92187320239074e-163	TRIB2	24.6231878272866	26.3751909859575	25.09320628	65.86030250	70.46303702	63.89977332	34.37669138	32.94672949	33.31871791
15	1.41514290463119	4.28394899861381e-164	4.26161126454961e-161	COMMD8	12.8998259782516	13.050772874137	14.05460832	35.99500503	35.99294735	35.99024198	42.14172605	40.68615847	42.42065821
16	1.2038640396391	6.1921617091496e-162	5.74921574155509e-159	SSX2IP	39.0503532013632	36.5842633149195	39.59016279	86.42887680	89.21064996	93.07321069	63.95400274	63.56966096	65.01857894
17	1.13805745295508	2.10942495605565e-156	1.83612258518669e-153	TNC	411.20517274353	391.902079630133	372.8794154	911.4534624	860.5998087	846.4440791	1511.567003	1468.305561	1554.251289
18	1.21100372780037	1.43597859663817e-152	1.17640434796351e-149	RAB12	30.8563837399778	30.4167206502063	31.88928298	72.12622579	74.22902293	71.89760488	62.81075419	66.24793664	63.00326729
19	1.58668299514642	3.58088420001444e-139	2.77060968075562e-136	STC1	8.97827888086311	8.52510163552496	9.068137847	26.06828415	26.58827214	28.17888836	26.43054803	28.92931597	25.68696398
20	1.03153278282341	1.73185526160641e-136	1.2694499067575e-133	SLIT2	243.54871446939	224.53644233616	226.3214181	468.0031733	476.5927203	491.8459206	450.5531194	423.0100116	449.0015229
21	1.12237005015307	4.03327349281685e-133	2.80856999672302e-130	AAGAB	25.9441300074596	26.2278435502817	27.02345291	59.18573202	57.12774263	58.07751771	61.04494456	58.70543969	60.80624722
22	1.13483447420888	3.87033602143435e-132	2.5667699890722e-129	COL8A1	130.112804747037	121.056443224454	120.9621225	272.1930702	274.2378596	280.4628183	247.4284152	228.8547181	255.9610977
23	0.76861333414839	4.98427559255326e-128	3.15527300806769e-125	LAMB1	347.077557840446	335.320664330648	346.4792713	589.2181406	592.5768548	591.6944964	601.9373376	607.3974761	606.7079185
24	1.10360750428471	6.96602473945468e-125	4.21807941506023e-122	CRABP2	165.613125839185	176.564327206873	165.4784356	383.4642897	362.5841849	357.4160473	297.8898212	286.4770316	269.2423318
25	-1.06633428046114	3.25703843213295e-122	1.89003226017982e-119	PURA	70.6704066392535	69.190145866594	72.80649034	35.36500731	33.56460671	33.73178695	48.20886684	47.79540494	49.45773001
26	-0.975583321313511	8.4072307615726e-120	4.68350011265686e-117	NORAD	566.539717243245	564.256480103413	606.9821404	297.5291949	285.2682883	311.2316780	430.1444350	447.1538791	455.2952420
27	-1.14400632988284	2.60007128477474e-113	1.39273818396376e-110	LBR	52.5280913834405	49.6771354563924	52.80028821	23.03748430	22.61649465	25.36099953	48.40129481	48.34681464	47.83887312
28	1.5627724122809	3.95934828245093e-112	2.04229050109978e-109	MMP1	16.9039319619009	15.5135800132886	14.43663630	43.43578895	44.59503540	52.11022371	59.78850309	61.14739693	62.25991464
29	0.92906087783015	6.814564670465e-110	3.38951579162736e-107	BAG2	63.9418574089975	66.0116511827316	68.34279499	128.8941287	127.0968798	125.9554870	140.4497815	145.7493992	136.9751160
30	2.15548627650218	5.92161998592462e-109	2.84380694979215e-106	PODXL	2.84828157599795	3.53633845621776	2.613875654	12.90643983	13.84977334	13.79936739	4.380566205	4.312811571	3.733282225
31	0.707296411581976	2.57566499539123e-108	1.19570954636045e-105	ATP2B4	503.051933708682	481.573519055654	492.0319318	809.9216672	819.3180178	810.2259196	663.3105417	674.8073118	676.4509165
32	-0.714859731286293	2.74218583659034e-106	1.23194910149012e-103	HEG1	608.33515341278	593.725967238561	602.5988720	369.5362319	370.7129523	372.2099637	654.5380900	635.9526213	667.7619500
33	1.03324954224488	6.63741332358964e-103	2.88872672992603e-100	ETV1	24.9947028154603	23.7018875101262	24.14818969	49.42928080	51.71542407	49.74816983	31.26388594	30.40630623	3 29.46980305
34	1.14880944369458	1.50032203076728e-102	6.33181361287754e-100	SLC17A5	28.0906610502407	30.5219688185462	26.82238556	66.28597663	61.12009928	64.10697103	77.78617820	80.50581599	76.36709615
35	-1.09315016648007	1.98504091126693e-102	8.13107787388662e-100	MAP3K3	57.9356984335236	62.4753127265138	57.06291620	29.37151546	27.67896752	26.99786142	42.41338907	43.87645744	42.81711296
36	1.12619224808891	2.10079261022215e-102	8.35935390930398e-100	CPED1	19.2981396634644	18.3763301921316	18.86011818	41.40958006	41.05542022	42.41337094	47.55234787	45.47160692	43.24660560
37	1.42012206861522	1.6056868181501e-101	6.21177786566014e-99	NCEH1	10.2785813394709	10.0617248932863	9.651233185	24.70612692	27.06159278	29.56711301	35.79160295	33.99046927	36.90332961
	edgeR	+											

\$CEITEC

Count normalisation

- Normalize to:
 - Gene size
 - Library size
- rpkm Reads Per Kilobase of transcript per Million mapped reads
- fpkm Fragments Per Kilobase of transcript per Million mapped reads
- tpm Transcripts Per Million (TPM)
 - for every 1,000,000 RNA molecules in the RNA-seq sample, x came from this gene/transcript
- Never ever use normalized counts for any comparisons
 - ...except comparing a single gene in a single experiment for the samples
 - If you really, really need to use any kind of normalized counts to compare use TPM

log2(fold-change)

- Fold-change is usually calculated by average expression of all samples of condition 1 vs average expression of all samples of condition 2
- Example:
 - a) geneA expression in **pre is 5**, in **post is 10**; fold-change of post/pre is **2** = gene is **up-regulated 2x**
 - b) geneB expression in pre is 10, in post is 5; fold-change of post/pre is 0.5 = gene is down-regulated 1/2x ... (O_o)
- Solution: Adding log2 gives us log2(2) = 1, log2(0.5) = -1
- Nice and even distribution around 0 and clear interpretations

log2(fold-change)

- But it might be **misleading**
- Large log2FC on low-expressed genes are most likely not biologically relevant
- Small log2FC on highly-expressed genes might be biologically relevant
- Example: "Common" cut-off value of fold-change of 2x (log2FC=+/-1) or 1.5x (log2FC=+/-0.58)
 - geneA expression in WT is **10** and in KO is **4**, **log2FC = -1.32 YES (?)**
 - geneB expression in WT is **1,000,000** and in KO is **500,001**, log2FC = **-0.99 NO (?)**

P-value and adjusted p-value

- P-value tries to give you "a number" saying if the differences you are observing are robust and the differences are not "random" between the compared conditions/samples
- Adjusted p-value adds a correction for the multiple testing we are doing tries to add correction of getting a p-value just by accident
- But is adjusted p-value 0.049 really better than 0.051?
- Number of replicates highly influences the estimates
 - The observations might be the same but the statistical significance might be lower

How many differentially expressed genes I have?

It depends how many you want...:)

Selection of the differentially expressed (DE) gene is completely up to you

Some people use **p-value**, **some adjusted p-value and some people log2fc and their combinations**, some just take top *n* genes

Statistical significance ≠ biological relevance!!!

Scientists rise up against statistical significance, Nature 567, 305-307 (2019), doi: <u>10.1038/d41586-019-00857-9</u>

P-value significance

BEWARE FALSE CONCLUSIONS

Studies currently dubbed 'statistically significant' and 'statistically non-significant' need not be contradictory, and such designations might cause genuine effects to be dismissed.

Differential expression output

• Example

