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SUMMARY

Trypanosoma brucei is an extracellular parasite that
causes sleeping sickness. In mammalian hosts,
trypanosomes are thought to exist in two major
niches: early in infection, they populate the blood;
later, they breach the blood-brain barrier. Working
with a well-established mouse model, we discov-
ered that adipose tissue constitutes a third major
reservoir for T. brucei. Parasites from adipose tis-
sue, here termed adipose tissue forms (ATFs), can
replicate and were capable of infecting a naive
animal. ATFs were transcriptionally distinct from
bloodstream forms, and the genes upregulated
included putative fatty acid b-oxidation enzymes.
Consistent with this, ATFs were able to utilize
exogenous myristate and form b-oxidation interme-
diates, suggesting that ATF parasites can use fatty
acids as an external carbon source. These find-
ings identify the adipose tissue as a niche for
T. brucei during its mammalian life cycle and could
potentially explain the weight loss associated with
sleeping sickness.

INTRODUCTION

Human African trypanosomiasis (HAT), also known as sleeping

sickness, is a neglected tropical disease that is almost always

fatal if left untreated. This disease is caused by Trypanosoma

brucei, a unicellular parasite that lives in the blood, lymphatic

system, and interstitial spaces of organs (reviewed in Kennedy,

2013). Disease pathology often correlates with sites of accumu-

lation of the infectious agent within its host, including the brain,

which is associated with characteristic neuropsychiatric symp-

toms and sleep disorder. Weight loss is another typical clinical
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This is an open access article und
feature of sleeping sickness pathology (Kennedy, 2013), but is

essentially unstudied.

T. brucei is transmitted through the bite of a tsetse and

quickly adapts to the mammalian host to become what is

known as a ‘‘slender’’ bloodstream form (BSF). As parasitemia

increases, slender forms are capable of sensing population

density, and this triggers differentiation to the stumpy form,

which is pre-adapted to life in the transmitting tsetse vector

and, once there, further differentiates into procyclic form

(PCF). Several studies have shown 10%–30% of genes being

differentially expressed between BSFs and PCFs (reviewed in

Siegel et al., 2011), including genes involved in metabolism,

organelle activity, cell-cycle regulation, and endocytic activ-

ity. Recent proteomic studies also revealed around 33% of

proteins that are developmentally regulated (Butter et al.,

2013).

A major difference between BSFs and PCFs is their energy

production, with the former utilizing glucose via glycolysis

within the glycosome and the latter utilizing proline and, to a

lesser extent, other amino acids as their carbon source, via

the Krebs cycle in mitochondrion (reviewed in Szöör et al.,

2014). To date, no fatty acid b-oxidation has been observed

as a carbon source in any life cycle stage of this parasite.

This has been a puzzling observation, as the genes required

for productive b-oxidation, including the carnitine-acyltrans-

ferases (for mitochondrial import of fatty acids), are present

in the genome.

Here, we describe an additional form of T. brucei in mamma-

lian hosts: we demonstrate that T. brucei accumulates in adipose

tissue, consistent with recent studies showing accumulation of

parasites in the lower abdomen (Claes et al., 2009; McLatchie

et al., 2013). Adipose tissue resident T. brucei have a different

metabolic profile from either slender or stumpy forms in the

blood, and this profile is consistent with their utilization of fatty

acids (myristate) as a carbon source. These experiments

describe an additional form of T. brucei life cycle and possibly

explain weight loss (wasting), one of the characteristic patholog-

ical features of sleeping sickness.
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RESULTS

T. brucei Parasites Are Heterogeneously Distributed
in Mice
The well-established mouse model (C57BL/6J mice with a pleo-

morphic clone AnTat1.1E) was used to confirmweight loss during

infection as observed in humans with sleeping sickness. Parasi-

temia followed a previously described pattern: the first peak of

parasitemia occurred 5–6 days post-infection, at around 2 3

108 parasites/mL, and after approximately 4 days of undetect-

able parasitemia, parasites could be detected again with

a fluctuating parasitemia of 106–107 parasites/mL (Figure 1A). Af-

ter the first peak of parasitemia, all infected animals showed

reduced food intake and a 10%–15% decrease in body weight.

Eventually, all mice recovered normal food intake, although their

body weight remained 5% lower than that of non-infected ani-

mals (Figures 1B and S1A, available online). The weight of most

organs from mice sacrificed on days 6 and 28 post-infection

showed minimal changes relative to day 0, except fat depots,

which decreasedonaverage 43%±12%.Spleen size andweight

increased dramatically as previously reported (Figure 1C). In-

fected mice died 35 ± 2.5 days post-infection (Figure 1D).

To assess the parasite load in different organs, we used immu-

nohistochemistry at different days of infection (Figures 1E and

S1B). Parasites were consistently detected in the fat 6 days

post-infection and at later time points, while in other organs

they were seen sporadically and at very low densities. As infec-

tion progressed, we observed an increase in parasite load in

most organs, with fat, heart, brain, lung, and kidney being the

most visibly infiltrated. Parasites were always found extracellu-

larly within the interstitium of these organs. In the brain, our

data corroborate the extensively reported evidence for the local-

ization of parasites being restricted to the choroid plexuses and

meninges (Kennedy, 2013) (Figure 1E).

Histologically, thymus, lymph nodes, bone marrow, skin (of

the head and neck), salivary glands, spleen, gastrointestinal mu-

cosa, testis, and liver displayed few or no parasites (Figure 1E;

data not shown). Although parasites in the stroma of the testis

were absent, the epidymal fat body and stroma of the epididymis

(a small paired organ in the posterior end of the testis) contained

a significant number of parasites, many of which appeared as

debris, but which could explain the bioluminescence detected

by Claes et al. (2009).

Early in Infection, T. brucei Accumulate in Adipose
Tissue
Immunohistochemical staining showed parasites in the stroma

of several fat depots: gonadal, mediastinic, mesenteric, retro-

peritoneal, perirenal, and interscapular (Figure 2A). Transmission

electron microscopy (TEM) confirmed that these parasites

were indeed extravascular, as numerous trypanosomes were

observed in the interstitial space, either between adjacent adipo-

cytes or between the adipocytes and the capillaries (Figure 2B).

To quantify parasite density, we used as a proxy Trypanosome

genomic DNA (gDNA), which was quantified at 6 and 28 days

post-infection in the organs/tissues where parasites had been

detected by histology, i.e., fat, lung, heart, kidney, brain, and

blood (Figures 2C and S2A). The blood had the highest parasite

density on day 6. Among solid organs/tissues, for the same day
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of infection, parasite density was relatively low, except for fat,

which had on average 60-fold more parasites than lung, heart,

kidney, and brain and 7-fold less than blood. On day 28 of infec-

tion, parasite density remained equally high in fat (104–105

parasites/mg), while it increased, on average, 20-fold in the

brain, heart, and lung (Figure 2C). The overall high parasite den-

sity was detected in all fat depots characterized in this study,

with no significant differences between white and brown fat de-

pots (Figure S2B; Supplemental Experimental Procedures). The

blood was the only site where we observed a decrease in para-

site density during infection, which is consistent with parasitemia

dynamics (Figures 1A and 2C). As a consequence, on day 28, fat

was the compartment with the highest parasite density (linear

mixed-effects model [LME], p < 0.0001).

Overall, the density of parasites per milligram of organ/tissue

correlated well with the density calculated as a ratio of parasite

gDNA versus mouse gDNA in each tissue (Figure S2C). We

also observed essentially the same pattern of parasite density

and the same preferential accumulation in the fat when we quan-

tified parasite RNA (qRT-PCR) instead of DNA (Figure S2D), sug-

gesting that gDNA quantification reflects accurately the number

of live parasites. Immunohistochemistry also showed accumula-

tion of parasites in fat regardless of parasite strain (EATRO1125

AnTat1.1E, Lister 427), infection route (intraperitoneal, intra-

vascular), mouse strains (C57BL/6J, BALB/c), animal gender

(male, female), or rodent species (mice, rat) (Figure S2E).

Fat represents around 14% of the body weight of a healthy

mouse (Jackson Mouse Phenome Database); thus, it is poten-

tially a very large reservoir of parasites. The number of parasites

in the organs/tissues (parasite load) was determined by multi-

plying parasite density by the weight of the organ at the corre-

sponding time of infection. For fat, we used the weight of the

six depots characterized in this work, which comprises around

25% of the total body fat. We observed that while 6 days post-

infection, the blood contained the majority of the parasites

(around 108 parasites), on day 28 the six depots of fat contained

overall more parasites than the blood, brain, and all other tested

organs combined (LME, p < 0.0001) (Figure 2D). A similar prefer-

ence for accumulation in fat was observed when the mouse

infection was initiated by a tsetse bite, which deposits metacy-

clic forms in the skin of the mouse (Figure S3) (LME, p <

0.0001). Overall, these data revealed that fat represents a major

reservoir of parasites, regardless of whether the infection was

initiated by BSFs or metacyclic forms.

Adipose Tissue Contains Replicative and Infective
Parasites
In the blood, parasites can be either replicative slender, G1-

arrested stumpy forms or intermediate forms that are not fully

differentiated (reviewed in MacGregor et al., 2012). To investi-

gate whether the parasites from fat (referred to hereafter as

adipose tissue forms [ATFs]) are replicative or not, we infected

mice with a GFP::PAD1utr reporter cell-line, in which a GFP

gene is followed by a PAD1 30 UTR that confers maximum

expression in stumpy forms (J. Sunter, A. Schwede, and

M. Carrington, personal communication; MacGregor et al.,

2012). Four and six days post-infection, blood and fat were

collected, and parasites isolated and purified. As described by

MacGregor et al. (2011), on day 4 we observed that most



Figure 1. Tissue Distribution of T. brucei during a Mouse Infection Is Heterogeneous

(A) Mean parasitemia profile of 20 mice infected with T. brucei AnTat1.1E. Parasitemia was assessed from tail blood using a hemocytometer (limit of detection is

around 4 3 105 parasites/mL). Light gray shaded area represents SEM.

(B) Variation of body weight during infection. Daily body weight measurement of control and infected mice (n = 15 per group). Light gray shaded area

represents SEM.

(C) Variation of organ weight during infection (n = 4 per group).

(D) Survival curve of T. brucei infected mice (n = 8).

(E) Representative brightfield micrographs of T. brucei distribution in several organs/tissues at days 6 and 28 post-infection, assessed by immunohistochemistry

with a non-purified rabbit anti-VSG antibody (parasites appear in brown). n = 5 per time point. Scale bar, 50 mm.

See also Figures S1 and S2.
parasites in the blood were GFP negative (98%± 0.3%), while on

day 6 most parasites expressed high levels of GFP (86% ±

2.6%). Interestingly, from day 5, we noted the presence of

parasites expressing lower levels of GFP, which likely corre-

spond to differentiating intermediate forms (data not shown).
As the yield of isolation of ATF parasites was very low on days

4 and 5, we analyzed these parasites only on day 6. The majority

of the ATF parasites were GFP negative (79% ± 4.6%), while

21% ± 4.6% expressed GFP, indicating that on day 6 fat con-

tains fewer stumpy/intermediate forms than blood (Figure 3A).
Cell Host & Microbe 19, 837–848, June 8, 2016 839
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A B Figure 2. Fat Depots Are a Major Parasite

Reservoir

(A) Schematic representation of mice fat depots

and anti-VSG immunohistochemistry images of six

different fat depots, collected 28 days post-infec-

tion. Scale bar, 50 mm.

(B) Transmission electron micrograph of a gonadal

fat depot 6 days post-infection. Trypanosome (T)

and lymphocyte in the interstitial space, adjacent

to an adipocyte and next to a small capillary. Scale

bars, 2 and 0.5 mm in the left and right panels,

respectively.

(C) Parasite density in multiple organs/tissues

(6 and 28 days post-infection) was measured by

qRT-PCR of gDNA (quantification of T. brucei 18s

rDNA relative to the tissue/organ weight). Blood

density was assumed 1.05 g/mL. Fat value is the

average of quantification of the six depots indi-

cated in (A). Each point represents the geometric

mean of the parasite density on days 6 (n = 3–9)

and 28 post-infection (n = 3–6).

(D) Parasite load in multiple organs/tissues esti-

mated by multiplying parasite density with organ

weight at the corresponding day of infection. Each

point represents the geometric mean of the para-

site density on days 6 (n = 3–9) and 28 post-

infection (n = 3–6).

See also Figures S1–S3.
To confirm if GFP-negative ATF parasites are replicative and

GFP-positive parasites are cell-cycle arrested, we stained the

parasite nuclear DNA with propidium iodide and quantified it

by flow cytometry. In all samples (blood day 4, blood day 6,

and fat day 6), we observed that GFP-negative parasites dis-

played a cell-cycle profile characteristic of replicative cells

(around 60%–70% of cells in G1, 5% in S-phase and 20%–

30% in G2/M), while GFP-positive cells were cell-cycle arrested

in G1/G0 (90%–95%) (Figure 3B). Similar data were obtained

by performing cell-cycle analysis with DyeCycle Violet (Figures

S4A and S4B), further confirming the presence of slender and

stumpy/intermediate forms in fat.

To validate the presence of stumpy/intermediate forms in fat,

we used fluorescence microscopy on an intact gonadal depot

infected with GFP::PAD1utr-expressing parasites (Figure 3C).

LipidTOX stains the lipids in the large lipid droplet of adipocytes.

Among the adipocytes, we could clearly observe many green

foci, which represent the parasite nuclei where GFP accumu-
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lates, thus confirming the presence of

GFP-positive parasites (stumpy and/or

intermediate forms) in close proximity to

adipocytes. The presence of replicating

parasites in intact tissue was confirmed

by immunohistochemistry with an anti-

H2A antibody. Dividing nuclei were clearly

visible in close proximity to adipocytes

(Figure S4C), further confirming the fluo-

rescence-activated cell sorting (FACS)

cell-cycle data.

To test whether ATF parasites are

capable of establishing a new infection,

an infected donor mouse was sacrificed

and perfused, and several organs were collected, homogenized,

and injected intraperitoneally into recipient naive mice. Parasite-

mia was assessed daily thereafter and scored on the first day

it became detectable (Figure 3D). Mice that received blood or

a fat homogenate showed parasitemia earlier (around 3 days

post-transplantation) than animals injected with heart and brain

homogenates (around 4 days post-transplantation), consistent

with the observed parasite load in these organs (Figures 2D

and 3D). Transplant of intact gonadal fat depot also led to suc-

cessful infection of the recipient naive mice (data not shown),

suggesting that parasites can exit from an intact tissue. These re-

sults showed that parasites from fat, heart, and brain are capable

of reinvading the bloodstream and establishing a new infection.

Morphology of Adipose Tissue Forms
Although T. brucei is always extracellular, its morphology

changes during the life cycle, which may reflect a specific adap-

tation to the host niche (Wheeler et al., 2013; Bargul et al., 2016).



Figure 3. Fat Harbors Replicative Forms that Can Establish a New Infection

(A) Frequency of GFP expression measured by flow cytometry in parasites isolated from blood and fat, 4 and 6 days post-infection with aGFP::PAD1utr T. brucei

reporter cell line (n = 2–3).

(B) Cell-cycle analysis assayed by flow cytometry of propidium iodide-stained parasites (n = 2–3). The values represented are the means of the percentage of the

cell population in each cell-cycle stage and their SEM.

(C) Fluorescence microscopy of gonadal adipose tissue from a mouse infected for 6 days with GFP::PAD1utr reporter cell line. Lipid droplets were stained with

LipidTOX (red), and nuclei of GFP-expressing parasites (stumpy and/or intermediate forms) are green. Scale bar, 50 mm.

(D) Onset of parasitemia curves in mice that were injected intraperitoneally with infected organs/tissues lysates from a donor mouse. Lysates from blood, heart,

brain, and gonadal fat depot were prepared frommice sacrificed between 21 and 28 days post-infection to ensure presence of a larger number of parasites (n = 9).

See also Figure S4.
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Figure 4. Fat Is Populated by Slender, Intermediate, and Stumpy Forms

(A) Morphological features (length and width) of fixed parasites isolated from fat and blood of mice infected with GFP::PAD1utr reporter. Fat gonadal tissue was

collected on day 6 post-infection. The blood ‘‘controls’’ were obtained as follows: GFP-negative parasites were collected on day 4 post-infection (mostly slender

forms), andGFP-positive parasites were collected on day 6 post-infection (mostly stumpy forms).Morphometricmeasurements were scored from phase contrast

microscopy images, analyzed via HTIAoT, and confirmed by manual measurement. GFP negative, slender form; GFP positive, stumpy and intermediate forms.

n = 100 per group, from three independent mouse experiments. Statistical significance was assessed using a Wilcoxon rank-sum test.

(B) Representative images of parasites isolated from fat. Replicating parasites (such as the second from the left) were excluded frommorphometric analysis. DNA

was stained with DAPI (blue). GFP protein (green) is localized in the nucleus of intermediate and stumpy forms. Scale bar, 4 mm.

(C) Transmission electron micrograph and 3D tomography images of a parasite isolated from gonadal adipose tissue. Mitochondrion is represented in cyan,

glycosomes in pink, nucleus in white, and plasma membrane in yellow. Scale bar, 500 nm.

See also Figure S5 and Movie S1.
ATF parasites, like BSFs, have an undulating appearance, with a

flagellum attached to the cell body and with kinetoplast DNA

positioned between nucleus and flagellar pocket (Figure 4B).
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To characterize in more detail the morphology of ATF para-

sites, we compared the length and width of GFP::PAD1utr para-

sites isolated from adipose tissue (day 6 post-infection) and



blood (days 4 and 6 post-infection) (Figures 4A and 4B). Auto-

matic measurements of phase contrast microscopy images

were generated via HTIAoT (Wheeler et al., 2012) and confirmed

with manual measurements (Figure S5A). We observed that

slender forms (GFP negative) from blood and adipose tissue

were very similar both in length (blood, 24.39 ± 2.50 mm; fat,

24.57 ± 2.99 mm) and width (blood, 2.15 ± 0.26 mm; fat, 2.12 ±

0.26 mm). This average length is consistent with previous reports

(Tyler, 1998; Tyler et al., 2001; Bargul et al., 2016). In blood day 6

post-infection, GFP-positive parasites were, as expected,

shorter (18.43 ± 1.81 mm) andwider (3.11 ± 0.38 mm) than slender

counterparts of day 4, corresponding to the morphology of

stumpy forms (Tyler et al., 2001). Interestingly, in adipose tissue

we found not only stumpy forms, but also GFP-positive parasites

that morphologically were in between slender and stumpy forms

(length, 21.32 ± 2.73 mm; width, 2.29 ± 0.31 mm) (Tyler, 1998).

These probably correspond to the previously described blood in-

termediate forms, which, as the name suggests, are not fully

differentiated into stumpy forms, but could already express

GFP::PAD1 (MacGregor et al., 2011, 2012). These results indi-

cate that adipose tissue is populated by parasites whose

morphology has been previously found in the blood. The only

significant difference is their relative distribution: on day 6 of

infection, while blood is mostly populated by stumpy forms,

adipose tissue appears to be ‘‘delayed,’’ as we detected both

intermediate and stumpy forms.

At the ultrastructure level, ATF parasites contain all major

structures described in other stages of life cycle (Gull, 1999),

including an electron-dense coat, nucleus,mitochondrion, endo-

plasmic reticulum,Golgi apparatus, glycosomes, dense granules

and numerous vesicles compatible with endosomes, an internal

subpellicular corset of microtubules underneath plasma mem-

brane, and a flagellum attached to the cell body (Figures 4C

and S5B). Using serial 3D tomography, we observed that the sin-

gle mitochondrion of ATF parasites occupies a small volume of

parasite body and is not highly branched (Figure 4C; Movie S1).

This organization was confirmed by Mitotracker Green staining,

which showed no major differences between the mitochondrion

of parasites in blood and adipose tissue (Figure S5C; Movie S1).

Transcriptome of ATF Parasites Reveals Differences in
Several Key Regulatory Processes
During its life cycle, T. brucei adapts to its environment by

changing gene expression (reviewed in Siegel et al., 2011). To

test whether parasites within fat also adapted to the new envi-

ronment, total RNA was extracted from infected gonadal fat

depot (n = 3) on day 6, along with parasites from blood (n = 2)

on day 4 (maximizing slender and minimizing stumpy/intermedi-

ate forms), and was subjected to RNA sequencing (RNA-seq)

analysis. As expected, sequence reads from blood samples cor-

responded mainly to parasite transcripts, while sequence reads

from fat corresponded mainly to host transcripts. Nevertheless,

the 1%–9% of the sequence reads from T. brucei provided

enough statistical power to detect changes in the transcriptomes

of ATF parasites (Table S1). Two previously published RNA-seq

datasets of BSF parasites grown in culture were also included in

this analysis (Pena et al., 2014).

Unbiased clustering of gene expression profiles revealed that

ATF parasites clustered separately from parasites isolated from
blood or culture (Figure 5A), suggesting significant changes in

their overall transcriptome. Changes were identified using three

methods of differential expression analysis, and only those genes

identified by at least twomethods with an adjusted p value <0.01

were considered. These analyses showed that 2,328 genes

(around 20% of transcriptome) were differentially expressed be-

tween BSF and ATF parasites: 1,160 were upregulated in ATF

parasites and 1,178 were upregulated in BSFs (Figures 5B and

5C; Table S2).

Significant changes were found in genes involved in gene

expression regulation, cell cycle, and cell signaling (Table S3).

RNA-binding proteins play an important role in gene expression

anddifferentiation throughout theT.brucei life cycle. For example,

RNA-bindingprotein 42 (RBP42; TriTrypDB:Tb927.6.4440, http://

tritrypdb.org/tritrypdb/) binds many mRNAs involved in cellular

energy metabolism (Das et al., 2012). Upregulation of RBP42 in

ATF parasites could be involved in the metabolic rewiring when

parasites enter the fat (Table S3).

ATF parasite transcriptome also showed dramatic changes in

gene expression of various post- and co-translational modifying

enzymes that might have considerable influence on diverse

cellular processes (Table S3). A small number of genes poten-

tially acting in the cell cycle and cytokinesis was identified with

significant differential expression, including the cytoskeleton-

associated AIR9 protein and spastin, which were upregulated

(Table S3), suggesting differences in cell-cycle regulation in

these parasites. Consistent with aminor stumpy form population

in fat, we did not find enrichment of stumpy-specific genes in the

transcriptome of ATF parasites. Extracellular signaling mecha-

nisms also seem to be affected in ATF parasites, including

upregulation of TOR3, which can relate the supply of external

nutrients to internal energy levels to regulate cellular growth

(de Jesus et al., 2010).

Interestingly, although by TEM an electron-dense coat can

be observed around the parasite (Figure 2B), we found that

the transcript levels of the active variant surface glycoprotein

(VSG) (VSG AnTat1.1, CAA25971.1) are 3-fold downregulated

in adipose tissue, suggesting VSG downregulation or VSG

switching within the tissue. As the VSGnome of AnTat1.1E

clone is currently unknown, we could not test whether

silent VSGs were upregulated as a compensatory mechanism.

Genes encoding for other surface molecules, such as the

haptoglobin receptor and most procyclins, were not differen-

tially expressed.

Transcriptome of ATF Parasites Reveals Metabolic
Adaptations
One of the most evident changes in ATF transcriptome was the

upregulation of many metabolic pathways, including glycolysis,

pentose phosphate, purine salvage, sterol and lipid metabolism,

and, surprisingly, b-oxidation. Thirteen of the 14 enzymatic

steps of glycolysis were upregulated relative to BSFs (Table

S3). This may either be a response to the lower glucose concen-

tration in fat interstitial fluid relative to bloodstream, or an upre-

gulated gluconeogenesis, which relies mostly on the same

enzymes.

In ATF parasites, genes involved in three out of the five

biosynthetic steps in the pentose-phosphate pathway were

upregulated, including the rate-limiting glucose-6-phosphate
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Figure 5. ATF Parasites Are Transcription-

ally Different from BSFs

(A) Hierarchically clustered heat map of Pearson

correlations of transcript levels (log2 transformed

RPKM) from independent RNA-seq datasets:

Lister427 parasites grown in culture (Pena et al.,

2014) (n = 2), parasites isolated from blood of

AnTat1.1-infected mice on day 4 post-infection

(n = 2), and parasites isolated from gonadal fat on

day 6 post-infection (n = 3).

(B) Heat map view of relative transcript levels for

differentially expressed genes from culture and

in vivo in parasites isolated from the two tissues

(adjusted p < 0.01 in at least two of three methods).

(C) Volcano plot displaying in red the differentially

expressed genes represented in (B). Displayed

p values and fold changes are from DESeq2.

See also Tables S1 and S2.
dehydrogenase (TriTrypDB: Tb927.10.2490). This obser-

vation, taken together with the fact that numerous enzymes

(16 in total) involved in purine salvage pathway were also

upregulated, suggests that ATF parasites may increase purine

production. Interestingly, the purine phosphatases (TriTrypDB:

Tb927.8.3800 and Tb927.7.1930) and cAMP phosphodies-

terase PDEA (TriTrypDB: Tb927.10.13000) are up- and down-

regulated, respectively, suggesting that the increased pu-

rine production may be directed toward cAMP signaling

(Table S3).

ATF parasites showed significant upregulation of the alanine

and aspartate aminotransferases and the glutamate shunt,

which feed products into the tricarboxylic acid (TCA) cycle. Addi-

tionally, this cycle also appeared to bemore active, given the up-

regulation in three key steps, allowing it to process succinate,

fumarate, and 2-oxoglutarate, resembling the TCA cycle of the

T. brucei insect form (reviewed in Szöör et al., 2014). These

changes suggest that the F0/F1 ATP synthase complex is

functional and that the associated electron transport chain is

operating in ATF parasites in a manner similar to that in PCF

parasites.

Significant changes in gene expression of lipid and sterol

metabolic pathways were also observed in ATF parasites. How-

ever, one of the most striking observations in the RNA-seq data

was the potential presence of an active fatty acid b-oxidation,
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which produces energy from fatty acid

catabolism. This was unexpected, as

b-oxidation activity has never been de-

tected in any T. brucei life cycle stage

to date. ATF parasites showed upregula-

tion of the putative genes responsible

for the second and fourth steps of

the b-oxidation cycle (enoyl-CoA hydra-

tase and 3-ketoacyl-CoA thiolase, respec-

tively) (Figure 6A). Moreover, fatty acid

transport across the mitochondrial mem-

brane (facilitated by acyl-CoA synthases

and carnitine-acyltransferases) was up-

regulated, while fatty acid elongases

2 and 4 were downregulated, suggesting
that in ATF parasites, endocytosed fatty acids are not being elon-

gated and anabolized into more complex molecules. Instead,

they may enter the glycosomes and/or mitochondrion, where

they are catabolized via a b-oxidation pathway to form acetyl-

CoA (experimentally validated; see below and Figure 6), which

feeds into the now-active TCA cycle.

ATF Parasites Have Active Fatty Acid b-Oxidation
To investigate whether ATF parasites are capable of b-oxida-

tion, labeled myristate was used in a pulse-chase experiment

with living trypanosomes, and potential labeled b-oxidation in-

termediates were identified by gas chromatography-mass

spectrometry (GC-MS). Myristate (C14:0) was chosen, as it

is efficiently taken up and incorporated into lipids and gly-

cosylphosphatidylinositol (GPI) anchors in the slender BSF

parasites (reviewed in van Hellemond and Tielens, 2006). Iso-

lated ATF parasites were labeled with deuterated myristate

(D27-C14:0) for 1 hr and then chased with serum, following

which labeled myristate metabolites were identified. As ex-

pected, BSFs showed accumulation of D27-C14:0 during the

pulse and chase periods (Figures 6B and 6C). ATF parasites

also showed D27-C14:0 accumulation during the pulse (Fig-

ure 6B, upper panel, and Figure 6C), but the amount of D27-

C14:0 decreased significantly during the chase (Figure 6B,

lower panel, and Figure 6C). Importantly, the decrease of



Figure 6. Fatty Acid b-Oxidation Is Active in

ATF Parasites

(A) Schematic of fatty acid b-oxidation pathway.

Four enzymatic modifications are indicated by

shaded box on the fatty acid structures where

biotransformation takes place. Formulas in blue

and green indicate the myristate and b-oxidation

metabolites from the non-labeled and labeled

myristate, respectively, identified in this work.

(B) Fatty acid methyl ester (FAME) analysis by GC-

MS of D27-C14:0-labeled BSF (left) or ATF (right)

parasites for 1 hr (upper) and chased for a further

1 hr (lower). GC-MS trace shows 30–34 min (n = 3).

(C) Uptake of D27-C14:0 and b-oxidation me-

tabolites after normalization to the added internal

standard C17:0. 100% equates to the amount of

D27-C14:0 taken up by bloodstream form in the 1 hr

labeling (pulse) (n = 3). The values represented are

the means and the respective SEM.

See also Figures S6 and S7.
D27-C14:0 in ATF parasites coincided with the detection

of b-oxidation metabolites derived from the labeled myris-

tate, including myristoleic acid (D25-C14:1), 3-hydroxy-myris-

tate (D25-3-OH-C14:0), and 3-oxo-myristic acid (D24-3-keto-

C14:0) (Figure 6B, right panels, and Figures 6C, S6, and S7).

The latter two metabolites were also observed to some minor

extent during the pulse (Figure 6B, upper panel, and Fig-

ure 6C), while D25-C14:1 was present in higher amount during

the chase period. Minor amounts of unlabeled 3-hydroxy-

myristrate (H26-3-OH-C14:0) were also observed in ATF para-

sites, but not BSFs (Figure 6C).

Collectively these data show that ATF parasites are able to

actively take up exogenous myristate and form b-oxidation inter-

mediates, demonstrating the existence of this pathway in try-

panosomes and suggesting that ATF parasites could in part

use fatty acid b-oxidation to satisfy their energy requirements.
Cell Hos
DISCUSSION

A well-established feature of the unicellu-

lar, extracellular T. brucei parasite is its

ability to invade the CNS. Here, we show

that while blood is the major site of para-

site accumulation on the first peak of par-

asitemia, fat contains the highest density

and total number of parasites later in

infection (around 100- to 800-fold more

than the brain). Although the reason(s)

why parasites accumulate in adipose tis-

sue remain unknown, we clearly show it

has dramatic consequences for the para-

sites. They functionally adapt to the tissue

environment by rewiring gene expression,

including the possibility of using lipids/

fatty acids as a carbon source.

Possible Advantages to Parasite
Accumulation in the Adipose Tissue
Accumulation in the adipose tissue could

be due to several non-mutually exclusive
reasons that may have provided a selective advantage during

evolution: parasites may be less efficiently eliminated by adipose

tissue-specific immune response, parasites may grow at a faster

rate, parasite differentiation may be delayed, and/or parasite en-

try in adipose tissue may be more efficient in adipose tissue than

in other organs/tissues. Depending on the dynamics of parasite

movement to/from adipose tissue, it is possible that fat acts as a

source of parasites that can repopulate the blood. This reversible

movement between blood and fat could have important impli-

cations for (1) the transmission dynamics, since stumpy forma-

tion is triggered by a quorum-sensing mechanism (MacGregor

et al., 2011), and (2) antigenic variation, if fat, for example, would

favor the appearance of new VSG variants that could later go to

the blood (Mugnier et al., 2015).

An intriguing question is whether stumpy forms could be

directly ingested by a tsetse fly from the subcutaneous fat.
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Although in our histological analysis we did not find a significant

number of parasites in this fat depot, it is possible we missed a

preferential skin location. Moreover, we performed this analysis

in mice infected by intraperitoneal injection, which bypasses the

skin as the first entry point of metacyclic forms. So it remains to

be determined whether subcutaneous fat is important for accu-

mulation of metacyclics and/or ATF parasites and how it impacts

transmission.

Not all Trypanosoma species occupy the same niche in the

host. T. brucei and T. evansi are mainly tissue-invading para-

sites, while T. congolense stays in smaller capillaries and venules

of tissues and T. vivax remains mainly in circulation (Losos and

Ikede, 1972). These differences have been associated with the

different swimming properties of each Trypanosoma species

(Bargul et al., 2016). Previous reports had indirectly suggested

that T. brucei parasites could be present in adipose tissue (Fer-

nandes et al., 1997; Giroud et al., 2009). Our study demonstrates

that T. brucei parasites accumulate in high numbers in the fat of

rodents. Although mouse is an accepted model to study

T. brucei infection (Giroud et al., 2009), we cannot exclude the

possibility that accumulation in adipose tissue is a result of the

selection process that happens when T. brucei infects a non-

natural host. In the future, it would be interesting to confirm

whether fat preference is a common feature of this and other

Trypanosoma species in their natural hosts and to compare

their swimming properties in different tissues/organs.

It is intriguing to note that several pathogens infect adipose

tissue. T. cruzi, the causative agent of Chagas disease in Latin

America, invades adipocytes during acute infections in mice

and humans (Ferreira et al., 2011). Also, Plasmodium berghei,

a causative agent of rodent malaria, sequesters in lungs and

fat (Franke-Fayard et al., 2005). Mycobacterium tuberculosis in-

fects adipocytes, where it accumulates in intracytoplasmic lipid

inclusions and survives in a ‘‘dormant’’ non-replicating state that

is insensitive to anti-mycobacterial drugs (Neyrolles et al., 2006).

HIV takes advantage of the fat as a viral reservoir during the

chronic stage of infection, and persistence on this reservoir is

an obstacle for treatment (Chun et al., 2015). It is possible that

persistence of T. brucei in the fat may also account for some

of the treatment failures in humans (Richardson et al., 2016).

Functional Adaptation to Host Adipose Tissue
A major observation in this work is that 20% of the genes are

differentially expressed between ATFs and BSFs, which is com-

parable with the differences between BSFs and PCFs (around

30%) and between slender and stumpy BSF forms (around

12%) (reviewed in Siegel et al., 2011). Parasites adapt to the

fat environment by changing transcript levels of genes involved

in metabolism, signaling, cell-cycle control, and RNA binding.

Using biochemical assays, we confirmed that ATF can utilize

fatty acids, i.e., myristate, and catabolize them via b-oxidation,

which could lead to the production of ATP via the TCA cycle

and oxidative phosphorylation. Therefore, it seems that para-

sites can sense and adapt to the adipose environment by rewir-

ing their gene expression, including the ability to use lipid/fatty

acid as a carbon source.

The major carbon source of BSF and PCF parasites is glucose

and proline, respectively, both of which are readily available

nutrients in the host (reviewed in Szöör et al., 2014). Fat is, in
846 Cell Host & Microbe 19, 837–848, June 8, 2016
its essence, a lipid-rich environment. Therefore, it is possible

that fatty acids or some other form of lipid are released from

the host adipocytes and are endocytosed or actively transported

via a receptor-mediated process by ATF parasites (Vassella

et al., 2000). So far, only one receptor has been identified in

T. brucei as necessary for the import of LDL particles (Coppens

et al., 1987). Its transcript levels are not altered in ATF parasites,

suggesting either that this protein can be upregulated post- or

co-translationally or that lipid/fatty acid import is mediated by

yet-uncharacterized transporters.

Consumption/utilization of host’s lipids during a T. brucei

infection could contribute to the weight loss observed in patients

with sleeping sickness, cattle with Nagana, and mice infected

with T. brucei (Kennedy, 2013; Ranjithkumar et al., 2013).

Interestingly, obese mice (db�/� knockout mice) infected with

T. brucei live 3-fold longer than their littermates, suggesting

that having more adipose tissue partially protected mice from

a T. brucei infection (Amole et al., 1985). Because obesity is

associated with persistent low-grade chronic inflammation in

adipose tissue (Ouchi et al., 2011), it is possible that in obese

mice, parasites get more efficiently eliminated (or controlled),

thus prolonging the survival of the host.

Most of what is known today about the mechanisms of viru-

lence, persistence, and transmission of T. brucei results from

studies performed in BSF parasites. The identification of adipose

tissue as an additional major reservoir of functionally differenti-

ated T. brucei brings a unique perspective to our understanding

of this parasite and raises several questions. What is the relative

contribution of BSF and ATF parasites for pathogenicity and host

metabolic alterations? Could fat act as a source of parasites ex-

pressing novel VSGs? What are the implications of such a large

reservoir of ATF parasites in terms of transmission?What are the

dynamics of parasite entry and exit from fat? Given that the brain

is a lipid-rich organ, which is also invaded by T. brucei, it is

obvious to ask whether these parasites also adapt their gene

expression and how this impacts brain-associated pathology.

Do ATF parasites induce changes in the host metabolism,

providing an advantage to the parasitic infection? Is the immune

response of the adipose tissue more permissive to T. brucei

parasites? Are anti-trypanosome drugs equally efficient at elim-

inating ATFs and BSFs? In sum, our findings have important con-

sequences for the understanding of parasite biology, disease,

and drug treatment efficacy.

EXPERIMENTAL PROCEDURES

Detailed experimental procedures can be found in Supplemental Experimental

Procedures.

Animal Experiments

Animal experiments were performed according to EU regulations and

approved by the Animal Ethics Committee of Instituto de Medicina Molecular

(AEC_2011_006_LF_TBrucei_IMM). Tsetse fly infections were performed in

compliance with the regulations for biosafety and animal ethics (VPU2014_1)

and under approval from the environmental administration of the Flemish

government. Unless otherwise indicated, all infections were performed in

wild-type male C57BL/6J mice, 6–10 weeks old (Charles River, France), by

intraperitoneal injection of 2,000 T. brucei AnTat 1.1E 90-13 parasites. For

parasite counts, blood samples were taken daily from the tail vein. Organs/tis-

sues of infected mice were collected at days 6 and 28 post-infection unless

otherwise stated. Animals were sacrificed by CO2 narcosis, blood collected



by heart puncture, and mice immediately perfused. Collected organs were

snap frozen in liquid nitrogen or fixed in 10% neutral-buffered formalin. In

transplants, homogenates as well as 600 mL of blood were transplanted into

age- and sex-matched naive mice.

Histology and Electron and Fluorescence Microscopy

Formalin-fixed organs were immunostained with a non-purified rabbit serum

anti-T. brucei VSG13 antigen (which crossreacts with many VSGs) and a

non-purified rabbit serum anti-T. brucei H2A. For TEM, ultra-thin sections

(70 nm) were screened in a Hitachi H-7650 microscope. 3D reconstruction

of isolated trypanosome was done using the IMOD software package version

4.7.3 for alignment and modeling (Kremer et al., 1996).

For fluorescence analysis, the gonadal depot was stained with LipidTox,

fixed in 10% neutral-buffered formalin and embedded in Fluoromount-G.

Fluorescence images were taken using a 403 objective in a Zeiss Cell

Observer wide-fieldmicroscope. Formorphometry analysis, isolated parasites

were fixed with paraformaldehyde, DAPI stained, and embedded in vecta-

shield. Images were taken using a 633 oil objective with optional optovar

magnification (1.63) in the same wide-field microscope. Parasite measure-

ments were taken essentially as described in Wheeler et al. (2012).

The mitochondrion of isolated parasites was labeled using MitoTracker

Green (Invitrogen/Molecular Probes, M-7514) according to the manufacturer’s

instructions. Fluorescence and DIC images were acquired using a confocal

laser point-scanning microscope (Zeiss LSM 710).

Parasite Quantification

T. brucei 18S rDNAgeneswere amplified from gDNA of a knownmass of tissue

and converted into parasite number using a standard curve. For RNA quanti-

fication, the DDCt method was used by amplifying TbZFP3 and mouse Gapdh

genes from tissue total RNA.

Parasite Isolation from Tissues

Bloodstream parasites were purified over a DEAE column (Taylor et al., 1974),

while ATF parasites were isolated from gonadal fat depot by incubating the

depot in MEM or HMI11 at 37�C and 150 rpm agitation for up to 40 min.

Flow Cytometry

Cell-cycle analysis was performed using propidium-iodide (PI) or Vybrant

DyeCycle violet (DCV) in fixed or live cells, respectively. PI staining was

done according to Aresta-Branco et al. (2016). For DCV staining, cell suspen-

sions were washed, and 0.5 mL DCV was added per each million isolated

parasites and incubated for 10 min at 37�C. PI, DCV, and GFP intensities

were measured with BD LSRFortessa cell analyzer.

RNA-Seq

RNA and cDNA library of both blood and gonadal fat depot from days 4 and 6 of

infection, respectively,were preparedasdescribed (Penaet al., 2014), andsam-

ples sequenced in an Illumina HiSeq2000 platform. Reads were processed and

mapped to the T. brucei TREU927 genome. Differential gene expression was

analyzed, and genes were considered differentially expressed if they were

detected by at least two of the three considered algorithms (p adjusted < 0.01).

Myristate Metabolic Labeling

To evaluate myristate incorporation and metabolism, the fat isolation protocol

was performed in lipid-free minimum essential medium (MEM). Parasites were

placed in a vented tubewith 1mLMEMand starved for 30min at 37�C. Starved
parasites were then labeled with 0.4 mg of radiolabeled D27-C14:0 pre-

coupled with defatted BSA for 1 hr. A total of 450 mL of the cell suspension

was washed, snap frozen in liquid nitrogen, and lyophilized in glass vials (pulse

sample). The remaining parasites were re-suspended in 500 mL MEM and

100 mL HMI11 for 1 hr at 37�C, and at the end processed as for pulse sample

(chase sample). Metabolite extraction, identification, and quantification were

conducted as described in Oyola et al. (2012), with the exception that fatty

acids were released by acid hydrolysis (200 mL 6M HCl at 110�C for 16 hr).

Statistical Analysis

Statistical analyses were performed by fitting LME models with mice as

random effects unless otherwise indicated. At least three independent exper-
iments were considered in each case and statistical significance was set to

a = 0.05 level. Data were analyzed after logarithm transformation.

ACCESSION NUMBERS

The accession number for Lister427 culture parasites is ArrayExpress:

E-MTAB-1715. Sequence data generated as part of this study have been

submitted to the ArrayExpress database (EMBL-EBI) under accession number

ArrayExpress: E-MTAB-4061.
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