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Highlights
Machine learning (ML) models can

predict gene expression levels

from DNA sequences, given suffi-

ciently large datasets. Such data-

sets are now rapidly becoming

available for regions that regulate

eukaryotic gene expression,

namely promoters and untrans-

lated regions (UTRs).
Controlling the expression of genes is one of the key challenges of synthetic biology. Until

recently fine-tuned control has been out of reach, particularly in eukaryotes owing to their

complexity of gene regulation. With advances in machine learning (ML) and in particular with

increasing dataset sizes, models predicting gene expression levels from regulatory sequences

can now be successfully constructed. Such models form the cornerstone of algorithms that allow

users to design regulatory regions to achieve a specific gene expression level. In this review we

discuss strategies for data collection, data encoding,ML practices, design algorithm choices, and

finally model interpretation. Ultimately, these developments will provide synthetic biologists

with highly specific genetic building blocks to rationally engineer complex pathways and circuits.
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These predictive models are

increasingly used in algorithms for

designing novel regulatory regions

to achieve a desired fine-tuned

expression level.

ML models of gene expression will

enable synthetic biologists to

rationally engineer complex path-

ways and circuits.

With increasing attention to inter-

pretability of ML models, they may

also help to gain deeper under-

standing of eukaryotic gene

regulation.
Controlling Gene Expression in Eukaryotes

A fundamental challenge in synthetic biology is controlling gene expression of engineered pathways

or circuits in an organism of interest. Gene expression levels should be carefully tuned to obtain

optimal protein levels and to evoke a desired function or phenotype, regardless of whether the cod-

ing sequences of the gene were present natively or introduced from another organism. Protein gene

expression is regulated through various regulatory genomic regions. Transcription initiation is mostly

regulated by the promoter (see Glossary), where transcription factors (TFs) bind to recruit or inhibit

RNA polymerases [1], but also by surrounding chromatin [2]. Translation initiation and elongation are

subsequently regulated by untranslated regions (UTRs) and coding sequences, respectively [3]. Box 1

provides a more detailed discussion.

Although prokaryotic host organisms are used in a wide array of biotechnological applications, eu-

karyotic hosts play an important role because they can produce larger proteins as well proteins

that require post-translational modification [4]. Compared with prokaryotes, the processes of tran-

scription and translation initiation are relatively complex in eukaryotes [5–7]. However, some regions

– promoters and UTRs – are now sufficiently well characterized that regulatory sequences can be

introduced to achieve desired expression levels. To allow rational, modular engineering, such regu-

latory sequences should have predictable and robust activities, and ideally be insensitive (i.e., orthog-

onal) to other processes in the host organism. Until recently these sequences were often selected

from a fixed library of characterized sequences. This approach has limitations [8–10] because; (i)

the desired gene expression may not lie in the range of the library or cannot be fine-tuned to the level

needed, (ii) longer sequences cannot easily be reused for different genes to avoid genetic engineer-

ing issues, and (iii) the set of parts available does not scale to engineer larger circuits or pathways.

Moreover, libraries characterized in particular hosts and environments may yield different or even un-

wanted (side) effects when the host or conditions are changed. As a result, there is increasing interest

in designing custom sets of regulatory sequences to achieve desired gene expression levels in spe-

cific applications.

Given the plummeting costs of DNA synthesis, in silico designed sequences can easily be obtained.

This leaves the question as to what sequences achieve a desired expression level. Computational

models for designing regulatory sequences have been available for prokaryotes for some time. A

well-known example is the ribosome binding calculator [11], which is based on a biophysical model.

However, eukaryotic gene regulation is more complex, and sufficiently detailed biophysical models

of transcription activation have not yet been developed. Nevertheless, increasingly large genomic

(sequence) and transcriptomic (activity) datasets are becoming available [12]. Such datasets offer op-

portunities for the application ofmachine learning (ML)methods, fitting predictive sequence–activity
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Box 1. Eukaryotic Gene Expression

The immediate genomic regions that are thought to play a role in eukaryotic gene regulation include distal en-

hancers, promoter (upstream and core), the 50-UTR, the coding sequence (CDS), introns, the 30-UTR, and the

terminator (Figure I). Beyond this, regulation may be influenced by, among others, surrounding genes, nucle-

osomal architecture, and the 3D conformation of the chromosomes in the nucleus. Other regulatory influences

can be epigenetic, such as histone modifications or DNAmethylation, and post-transcriptional, such as miRNA

regulation.

The most researched genomic regulatory region is the promoter. The core promoter is where the RNA poly-

merase is recruited and from where transcription begins [45]. The region is defined as the minimal portion

of the promoter that is necessary to initiate transcription. Core promoters can be categorized based on the

presence or absence of a consensus TATA box. Promoters lacking a consensus TATA box tend to be more

easily accessible owing to depletion of nucleosomes, allowing easier access by TFs and the RNA polymerase

complex [12]. It has been shown that sequences as short as 10 nt, in combination with a TATA box-containing

core promoter, can yield robust expression [78]. Initial high-throughput experiments have investigated this re-

gion by placing it upstream of a minimal TATA box-containing promoter [19,22,23].

The region downstream of the core promoter is called the 50-UTR. Starting at the transcription start-site (TSS)

and ending at the first codon to be translated into an amino acid, the 50-UTR is important in regulating trans-

lation initiation. The 50-UTR is a common target for optimization of gene expression owing to its relatively short

length. One of the most important possible elements is an upstream open reading frame (uORF), which when

present tends to inhibit expression. The other area of interest is the location directly upstream of the start

codon. The sequence known to produce high expression is the so-called Kozak sequence that is still being re-

searched because it is not always conserved [9].

The region downstream of the coding sequence is the 30-UTR, which is usually associated with miRNAs and

RNA-binding proteins (RBPs) in terms of gene regulation. The region normally contains one or more polyade-

nylation signals. The last region of each gene is the terminator region. This follows the 30-UTR, and is mainly

involved in cleavage of the 30 region of the mRNA and the process of polyadenylation [79].

5'-UTR 3'-UTR
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Figure I. Regions Involved in Regulating Eukaryotic Gene Expression.

Regions in red are part of the mature mRNA, only the coding sequence (CDS) is translated into a protein

product.

Glossary
Active learning: in ML, the use of a
model trained on a (small) initial
dataset to decide which data-
points are most informative to
add; in this context, to decide for
which sequences to measure ac-
tivity next.
Cross-validation: an ML validation
technique in which the data are
split into n parts, after which n
models are trained on n � 1 parts,
each time leaving out a different
part for testing. The cross-valida-
tion performance estimate is then
the average performance over
these test parts.
Element: a sequence motif that is
sufficiently conserved to be iden-
tified and has a function related to
gene expression. Notable exam-
ples are binding sites and sites
that promote nucleosome-free
regions of the DNA.
Fluorescence-activated cell sort-
ing (FACS): a single cell-based
method of sorting cells based on
fluorescence signals; can be used
to separate populations of cells
each showing similar expression
of a fluorescent reporter.
Generative adversarial networks
(GANs): a pair of neural networks
trained in tandem – a generator
network to generate realistic ’ad-
versarial’ examples, and a
discriminator network to distin-
guish between generated and real
samples [80].
Kernel-based models: a class of
ML algorithms based on the
’kernel trick’ that involves calcu-
lating similarities between sam-
ples using a kernel. The best-
known method is the support
vector machine [81].
K-mer: subsequence of length k,
often used to encode a sequence
by storing the frequencies of each
possible k-mer over the entire
sequence into a vector to be used
as the input for an ML algorithm.
Machine learning (ML): a subfield
of artificial intelligence that de-
velops algorithms that can learn to
perform specific tasks from a
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models without relying on extensive prior knowledge. Given sufficient data, such models can gener-

alize and predict activity for so far unseen sequences. Many relevant problems in biology are already

routinely addressed in this way, including the prediction of gene structure [13], protein function, loca-

tion, and structure [14–16], as well as protein–protein and protein–DNA interactions [17,18].

We discuss here how ML plays an increasingly important role in designing gene regulation in eukary-

otes (Figure 1, Key Figure). First, we discuss the issues encountered when collecting data and building

models to predict gene expression from sequence data. Next, we focus on design, surveying how

such models can be used in DNA design algorithms to achieve a desired gene expression level.

Finally, we highlight avenues for future research and discuss how ML can help to provide insights

into eukaryotic regulatory biology and be applied in synthetic biology.

given dataset.
One-hot encoding: a method of
transforming sequence data into
numerical data by turning each
letter into a vector of the length of
the alphabet of that sequence.
Overfitting: a situation in which an
ML model has become over-
adapted to the specific training
Generating Sequence Data

ML (Box 2) optimizes predictive models by fitting their parameters based on large datasets of inputs

and corresponding desired outputs, so-called training data. The resulting models are then used to

make predictions for new, unseen test data. Training a model to predict activity from sequence

data requires quantitative measurement of gene expression in a regulatory sequence library that is

sufficiently large and varied to capture the relevant parts of sequence space. The two main
192 Trends in Biotechnology, February 2020, Vol. 38, No. 2



data, to the point that it performs
less well on new, unseen samples.
Promoter: the region of a gene
where transcription factors (TFs)
and the RNA polymerase are re-
cruited, and from where tran-
scription begins.
Terminator: following the 30-UTR,
terminators are mainly involved in
cleavage of the 30 region of the
mRNA and in polyadenylation
[67].
Transfer learning: using knowl-
edge gained training an ML
model on one problem and using
it to train a model to solve a
different but similar task [61].
Untranslated region (UTR): an
mRNA region located upstream
(50 ) or downstream (30) of the
coding sequence. The 30-UTR
starts at the transcription start-site
(TSS) and ends at the first codon
translated into an amino acid, and
regulates translation initiation.
The 30-UTR is usually associated
with miRNAs and RNA-binding
proteins (RBPs) in terms of gene
regulation, and normally contains
one or more polyadenylation sig-
nals [67].

Key Figure

Design Cycle for Regulatory Sequences

(A) (B)

(D) (C)

Base sequence
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Figure 1. (A) Library construction, in one of three ways: (i) native sequences with a known binding site are extracted

via capture and clone methods, (ii) random combinations of nucleotides are used to generate the library, or (iii)

known elements such as transcription factor binding sites (TFBSs) or nucleosome altering sites are inserted into

a background sequence. (B) Measurement of activity, usually involving fluorescence-activated cell sorting (FACS)

or RNA-seq. (C) Using the sequences and corresponding activities to train a machine learning (ML) model. (D)

Designing new sequences, using the trained model as a design criterion, sometimes requiring a base-sequence

to modify. Designed sequences can be used for a desired purpose or can serve as new libraries to close the cycle.
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approaches are inserting subsequences into a background [19] and capturing native sequences [20].

The resulting variants are combined with a reporter gene, usually together with fixed, characterized

additional regions (Box 1) to isolate the effects of variation in a regulatory region of interest. These

constructs are introduced to cells on custom single-copy plasmids or via integration into the genome,

although this is generally more time-consuming [21]. Expression of the reporter gene downstream of

the variant sequences is then quantified.

To generate sufficient training data, some type of high-throughput sequence synthesis, measure-

ment, and sequencing must be combined. A commonly used paradigm is the massively parallel re-

porter assay (MPRA) [22,23] that generally produces thousands to millions of sequence–activity mea-

surements. MPRAs have been reviewed in the context of understanding genetic regulation [24], and

methods for statistical analysis have also been reviewed previously [25]. MPRAs usually create variants

by manipulating sequences at either the single-nucleotide level or at the element level [26].

Nucleotide-Level Variation

The most basic approach for creating a library is random mutagenesis at the nucleotide level. This is

often the method of choice owing to its ease of use. However, the space of potential variants quickly

becomes extremely large. For example, a library of 1 million sequences almost covers all 410 possible
Trends in Biotechnology, February 2020, Vol. 38, No. 2 193



Box 2. Machine Learning

ML is a subfield of artificial intelligence that develops algorithms that can learn to perform specific tasks from a

given dataset. ML is widely used in research and industry, with notable successes including automated trans-

lation, medical diagnosis, self-driving cars, etc. [82]. A major distinction is between supervised learning, aiming

to predict a desired output (often a label) for a given object, and unsupervised learning that seeks patterns in

sets of unlabeled objects. In both cases the input data often need to be preprocessed depending on their type

and the choice of algorithm, and care should be taken regarding what measurements are taken or calculated to

best represent the objects. Most algorithms work from numerical or categorical data, although some more

advanced methods can also directly process structured data such as sequences, words, graphs, etc.

Supervised learning optimizes a predictive model by fitting its parameters to perform well on large datasets of

inputs and corresponding desired outputs, the so-called training data. The resulting models can then make

predictions for new, unseen test data. Care should be taken to avoid overfitting, situations in which the model

performs well on training data but does not generalize well to new data. A common rule of thumb is that

training requires at least 10 samples per input feature [83].

The most decisive factor in successful application of ML is the availability of sufficient, well-measured, and

correctly labeled training data. However, the choice of model is also important: simpler models are less likely

to overfit, but cannot always model more complex relations between input features. Simpler models also tend

to be quicker to train, whereas for large deep learning models specialized hardware such as graphics process-

ing units (GPUs) may be required. An important consideration may be to select methods that give interpretable

decisions or attach a measure of certainty to their outputs, for deciding on subsequent actions such as

sequence design.
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sequences of length 10, but only 0.0001% of all possible sequences of length 20. Although ML

methods can generalize, and thus do not need to be trained on an exhaustive dataset, randomly sam-

pling all possible variants would be expected to yield mostly inactive sequences. Even so, in the

gigantic parallel reporter assay [27] a set of variants of 80 nt sequences was constructed without re-

strictions, and 100 million (108) of 480 (1048) possible variants were synthesized and tested in the lab-

oratory. TF binding sites (TFBSs) were found to have such low information content that they arise out

of random sequences sufficiently frequently to produce functional cis-regulatory regions by chance.

This indicates that random sampling may provide sufficiently rich data for training an ML model.

Scanning mutagenesis approaches, starting from one or more known sequences, offer a more sys-

tematic way to explore sequence space compared with random mutagenesis. A small region of

the DNA, or even a single nucleotide, is mutated at a time [19,28,29]. Large changes in measured

expression levels pinpoint the locations of important nucleotides, indicating the presence of binding

sites that influence nucleosome binding, or key DNA-shape features that affect the binding affinity of

surrounding elements. The exploration–exploitation trade-off, in other words how far to stray from

known sequences, is an important design choice here.

Element-Based Variation

An alternative approach is to combine known regulatory elements, either randomly or systematically.

Often, a characterized native regulatory sequence is selected, and known elements are removed by

mutation to create a background sequence of low activity. Elements are then inserted, replacing the

native bases, such that the overall variable region length stays the same [19]. This has the advantage

of using available prior knowledge for exploring sequence space. Moreover, the introduction or

removal of an element tends to have a larger effect on expression than randomly chosen mutations.

Even though elements can be seen as building blocks of regulation, they still need to be tested in the

target environment. They may, for example, rely on TFs present at different levels than in the environ-

ment they were characterized in [19]. The same holds for genomic context: if element activity depends

on surrounding chromatin structure [30], it may not work on a plasmid. In a clear example of the effect

of local DNA sequence, Maricque and colleagues found that it accounted for almost 50% of variance

in regulatory activity when they integrated lentivirus-based constructs into a genome [21]. In a
194 Trends in Biotechnology, February 2020, Vol. 38, No. 2
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follow-up study they showed that the relative effects of cis-regulatory sequences are maintained

regardless of genomic location [31].

Measuring Activity Levels

Once a library has been generated, variants can be inserted into reporter constructs and introduced

into cells. Gene expression is commonly measured [26] by either fluorescence-activated cell sorting

(FACS) or RNA sequencing (RNA-seq) [22,23]. In the first approach, variants activate expression of a

fluorescent reporter protein, and cells are sorted according to their fluorescence level into a set of

defined bins which quantize the full expression range. Variants are then isolated, barcoded to reflect

the expression bin from which they were retrieved, and sequenced by high-throughput DNA

sequencing. For each variant this results in a distribution of read-counts over the bins, from which

a measure of its corresponding gene expression is derived as the average bin expression level

over all reads [19,32]. This means that variation of expression can be estimated, which may be useful

in an ML context. Because activity is measured as protein fluorescence levels, the FACS-based

approach measures the combination of translation and transcription activity. When libraries are

made that only vary in regions known to modulate transcription activity, FACS measurements should

largely reflect transcriptional effects.

RNA-seq, by contrast, reports on transcription alone. Sequences should be made such that tran-

scripts contain unique barcode sequences linked to the regulatory variant, often in the 30-UTR or

as a synonymous codon barcode [33]. In either case care should be taken that the barcode in the

RNA does not interfere with transcription or RNA processing. Sequencing RNA allows quantization

of expression, whereas DNA sequencing makes it possible to link variants to expression levels

through the barcode. The activity measurement is then the ratio of RNA reads to the number of

DNA reads. This provides a direct measure of transcription, giving a clearer picture compared with

FACS-based approaches, but at the same time is not applicable to detecting the effects of 50-UTR
modifications on translation [34].

An alternative to the activity methods discussed above is a competitive growth assay, in which the

growth of a host depends on the amount of expression of an essential reporter protein. This growth

can then be measured through optical density measurements in a plate reader or by quantitative PCR

[35].

Data Encoding and Model Training

Although someMLmodels can handle sequence data directly [36], most models work with numeric or

categorical inputs. Sequence data should thus be encoded as a set of numbers, called features. There

are three common ways of doing this, encoding elements, k-mers, or nucleotides. This is an important

choice because it is related to the extent to which prior knowledge is available to the algorithm.

In element encoding, sequences are scanned for specific elements and their counts are recorded as

features [8,29,37–43]. This approach is closely linked to element-based data generation because it

will already be known which elements can be present in each sequence. However, information about

background sequence composition, as well as the relative positioning of elements and other

genomic landmarks, is lost when encoding using only counts. A notable exception is the work

done by Beer and Tavazoie [44], who mapped such features to patterns of gene expression across

many conditions.

Sequences can also be represented by the frequencies of their k-mers, in other words overlapping

subsequences of k nucleotides [21,28,33,45–47] (also known as q-grams or n-grams [48]). Optionally,

k-mer frequency profiles from single nucleotides up to the chosen k can be aggregated. The param-

eter k determines the coarseness of the encoding: the higher the value the more likely it is that

different sequences will have different k-mer profiles. However, because the number of features

grows exponentially with k, and large feature sets lead to sparse training data, it should be chosen

with care. The main advantage of k-mer counting is that no prior knowledge of elements is required
Trends in Biotechnology, February 2020, Vol. 38, No. 2 195
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because individual k-mers representing biological elements or parts thereof can be learned by the

model from the data.

Finally, individual nucleotides can be encoded as numbers. The most common method is called one-

hot encoding after the fact that each nucleotide is represented as a vector that contains all zeroes

except for a single ’hot’ position, usually set to one. This is placed at the index of the nucleotide en-

coded. In this way a DNA sequence is represented by amatrix with four columns and a number of rows

equal to the sequence length [27,49–53]. This method is often used with a deep learning model [49]

owing to the high interdependence of the features. Importantly, this encoding method keeps posi-

tional information, thereby allowing models to pick up important elements or local nucleotide

composition.

Features may also be inferred from the original sequence, for example using biophysical models

yielding free energy of the 50-UTR [9,45,54,55], or hybridization energy and target accessibility of

miRNA in the 30-UTR [56]. An important feature is nucleosome occupancy [39,57–59], which has

been used to facilitate terminator design [60]. ML models can use these predictions and combine

them with primary sequence information.

After features have been derived from sequences, a wide array of ML methods are available for

training. Simple models such as linear regression are not applicable to all problems, but can be fitted

using relatively small training sets and are far less likely to suffer from overfitting. At the other end of

the spectrum, (deep learning) neural networks can be fitted to almost any problem, but require large

amounts of training data and many design and parameter choices must be made. In practice, the art

of ML is trying out several approaches to learn which (type of) method is likely to give optimal perfor-

mance. Care should be taken to ensure themodel generalizes well, in other words does not overfit the

training data. This can be done through application of methods such as cross-validation, although

one of the most important aspects is that the dataset is sufficiently large (Box 2 for a more detailed

discussion).
ML-Based Design

A trained ML model can be used to predict the activity of unseen sequences. This predictor can then

serve as a criterion in a design algorithm searching for sequences to attain a target expression level or

to maximize expression, taking specified constraints (e.g., on sequence composition or homology)

into account. Table 1 lists examples of ML-based designs and indicates which applications the de-

signs were used for, including metabolic engineering. Two methods are generally used in design:

iterative guided mutations and element selection (Figure 2), but alternatives such as adaptive sam-

pling [61], generative adversarial networks (GANs), and paired deep learning models [62,63] are be-

ing developed. Note that searching the space of all possible sequences for maximum expression is

computationally expensive; as a result, methods are often used that can only be guaranteed to find

local (instead of global) maxima.

An algorithm involving iterated mutations, or in silico directed evolution [64], starts from a given

sequence (or sequence library [54]) and iteratively modifies it. These initial sequences are usually cho-

sen close to a known functional sequence or are based on how the design algorithm is being evalu-

ated; for example, Curran and colleagues [65] aimed to compare their algorithm to an often-used

promoter in traditional genetic engineering.

To evaluate the proposed mutations in silico, a trained ML model is required to predict expression

activity. Modifications are kept small, such that each iteration will only cause a small shift in expression

unless an important nucleotide is changed. This process can aim at a target expression level [9,65] or,

as in the study by Cuperus and colleagues, at optimizing expression until a plateau is reached [49].

In element selection, a fixed set of elements is combined into a new regulatory region. This approach

naturally pairs with a model trained on elements. Searching can be exhaustive because, for a
196 Trends in Biotechnology, February 2020, Vol. 38, No. 2



Table 1. Recent Successes of ML Using Design Algorithms for Optimizing Gene Expression in Eukaryotes

Organism Region Expression

output

Design

approach

Application Success measure Refs

Yeast Promoter Binned

fluorescence

(protein)

Iterated

mutations

Design de novo promoters Designed promoters span a �20-fold

dynamic range

[65]

Yeast 50-UTR Competitive

growth assay

(protein)

Iterated

mutations

Optimize 50-UTRs Improved expression for

�85–95% of sequences

[49]

Chinese hamster

ovarian cells

Promoter RNA-seq (mRNA) Element

selection

Stable reporter production in

batch culture

Designed promoter strengths were

maintained after 7 days in culture

[8]

Yeast 50-UTR Binned

fluorescence

(protein)

Iterated

mutations

Reliable p-coumaric acid

production

p-Coumaric acid titer correlated well

with predicted protein abundance

[9]

Yeast 50-UTR Binned

fluorescence

(protein)

Iterated

mutations

Increased production of

phloretin

The best result was 50% better

than control

[54]
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reasonable number of elements, all possible combinations can be tested and a global optimum can

be found. For example, the workflow applied by Brown and colleagues [8] used a pretrained linear

regression model to predict expression for all possible combinations of their regulatory elements.

Based on their design criteria, a small set of promoters were selected and synthesized. A downside

of element selection is that its search space is limited to the predefined elements, and this can render

some expression levels inaccessible or hamper the generation of different sequences attaining the

same expression level.
Challenges and Opportunities

The success of models for the design of gene expression regulation depends on choices made in

each of the four design cycle stages (Figure 1). These are not necessarily mutually exclusive: some
(A) (B)
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Figure 2. Design Algorithm Approaches Using Trained Machine Learning (ML) Models.

(A) Iterated mutations, repeatedly modifying a given sequence. A trained ML model is used to select modifications that bring the predicted expression

closer to the target expression level. (B) Element selection, combining known elements and selecting combinations based on the expression predicted

by a trained ML model.
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stages allow for combining different approaches, for example, in DNA encoding [9,54] or in response

measurement [65]. An important choice in sequence library generation and in the setup of the design

algorithm is to what extent prior knowledge is considered. This influences ML model training and can

help to constrain the sequence design search space. There is a clear trade-off between providing suf-

ficient prior knowledge to allow accurate designs and providing somuch knowledge that all designed

sequences will be similar to known sequences and to each other. An important skill in building a suc-

cessful ML model lies in the realization of ways to use knowledge about the system of interest (e.g.,

interactions between different features) to guide the learning process.

The sequence library generation step is crucial in that it should provide sufficiently accurate and

diverse data for training. Libraries optimal for training differ from those generated to answer specific

scientific questions, or to meet specific engineering goals, in that they should (at least partially)

explore new parts of sequence space which are not yet well understood. Although the advantage

of ML models is their flexibility to adapt to the data at hand, their dependency on data also imposes

limitations. Several experimental issues can lead to biases in the training data: some sequences can

be over- or under-represented in the training data because they may be easier or harder to synthesize

or sequence; extremely high reporter expression may harm the cell, leading to fewer measurements

in this range; some sequences may contain restriction sites, hampering transformation; and

sequencing may introduce biases for particular sequence characteristics; etc. Other unforeseen

in vivo interactions may introduce noise into the activity measurements, which is detrimental to

training.

It is important to realize that most ML models assume that the training data are an independent sam-

ple that represents the distribution of interest. If a model is used in design to predict activity for a

sequence that does not look anything like the training set, results are likely unreliable – extrapolation

is harder than interpolation. Ideally, a model should be used that provides a measure of confidence in

its output (e.g., a posterior probability), or should be combined with a domain description method

that determines to what extent a new sequence is sufficiently close to training sequences to allow pre-

diction. Even when deviation from the training sequences is tightly constrained, the design algorithm

can accidentally introduce, as a side effect, a repressor site or an insulating sequence that was not

observed during training. Extrapolation to organisms, genomic contexts, or even growth conditions

other than those for which the training data were obtained is also risky. Regulatory sequences might

appear to be (in)active or influence expression in ways not previously observed. An approach to deal

with potential side effects is found in the work of Brown and colleagues [8], who used prior knowledge

to hand-craft a set of promoters that would suit their needs, avoiding undesired interactions.

Although prior knowledge should ideally be used to avoid erroneous designs, for the foreseeable

future our knowledge of gene regulation will be too limited to avoid them completely, Therefore,

post hoc interpretation will still be necessary.

A major advantage of ML is that it provides an unbiased look at the data and can design sequences

that would never be designed by handcrafting a library. Moreover, when additional data become

available (perhaps measured under different conditions), models can be retested and even retrained,

in what is known as active learning [54]. A potential downside is that many ML models are ’black

boxes’, solving a prediction problem optimally but offering little insight into biology or even into

the considerations underlying particular design choices. Interpretability, namely our ability to explain

how a model arrived at a decision, is a topic of research in many application areas of ML. In general,

the more complex a model becomes, the harder it is to interpret its decisions. In a linear regression

model, the influence of a specific coefficient is clear because it, describes the relation between the

corresponding input variable and the output. For tree- or kernel-based models there are established

practices of interpretation [66], whereas for deep learning methods this is still ongoing research, as

shown by the work of Shrikumar and colleagues [67,68] and Cuperus and colleagues [49]. Although

model interpretability may not be an issue for engineering purposes, it is important to help to gain

a better understanding of eukaryotic gene regulation. For an overview on what can be learned

from a trained ML model in the context of human gene regulation, we refer the reader to a review

by Li and colleagues [69].
198 Trends in Biotechnology, February 2020, Vol. 38, No. 2



Outstanding Questions

In developing regulatory region

design algorithms, how should we

strike a good balance between

providing prior knowledge to

models and allowing them to learn

from data in an unbiased manner?

What other, possibly biologically

inspired, methods can we use to

efficiently search sequence space

at the nucleotide level?

If we want to exploit the power of

deep learning to gain a deeper un-

derstanding of eukaryotic gene

regulation, what datasets should

we ideally measure to allow its

application? To what extent will

interpretability be important for

synthetic biologists?

How can lessons learned from the

expression of single genes be

used to optimize sets of regulators

to control the expression of entire

circuits or pathways? Can we

design individual regulatory re-

gions to function as isolated mod-

ules, or will crosstalk make this

impossible and force us to optimize

the overall system?

How can we take into account

important additional experimental

issues such as robustness to chang-

ing conditions and transient

perturbations?

To what extent does a design suc-

cess obtained in yeast translate to

other eukaryotes? Will the

increased complexity of regulation

in higher eukaryotes be manage-

Trends in Biotechnology
Concluding Remarks and Future Perspectives

We have discussed the opportunities and potential pitfalls of using ML for designing regulatory re-

gions for eukaryotes, and have reviewed several recent contributions to the field. There is clearly

room for improvement and extension (see Outstanding Questions). First, current ML-based design

papers often focus on the 50-UTR because it is a small region, leading to a more manageable design

space, and also has less potential for unforeseen interactions. In the future, we expect this to be

extended to larger regulatory regions, and even to combinations of different regions (Box 1). Ulti-

mately, given sufficient training data, it should be feasible to design regulatory regions for tuning

the various genes in pathways or circuits, as has been demonstrated in prokaryotes [70,71]. Initial

research by Zhou and colleagues used ML for combinatorial optimization of heterologous metabolic

pathways in yeast [72]. Second, most research in this area focuses on unicellular yeasts, which have

served as a model system for studying transcriptional regulation for many decades in view of their

experimental accessibility. A potential issue is that their genome organization and regulatory reper-

toire may be too different from other branches of the eukaryotic tree that may be of interest in genetic

engineering [73]. An intriguing possibility, however, is to use yeast as a design platform for orthog-

onal regulatory systems for transfer to other organisms. Alternatively, depending on their accessi-

bility to genetic engineering tools, more training data should be generated for each organism and

condition. One avenue of interest is the cross-species work done in prokaryotes by Kushwaha and

Salis [74]. Given the less complex nature of gene regulation this did not require the use of ML, but

in eukaryotes this may be unavoidable. An approach called transfer learning [75], in other words re-

purposing a ML model trained on one task for another, can help to avoid the need to start from

scratch.

As in many areas of science and society, the combination of the availability of large datasets and

strong ML methods is set to have a major impact in biotechnology, moving from knowledge-based

to data-based approaches to problem solving [76]. Most recently, deep learning has received

much attention [77]. Even though trained deep learning models are notoriously hard to interpret, it

is clear that they are also finding their way into this application area [49,62]. Whether or not these

methods offer advantages at current dataset sizes remains to be seen. An interesting development

is to use deep learning networks directly, through gradient-based optimization, to modify an input

sequence to one that achieves a desired output, a process called ’deep dreaming’. This approach

was used by Killoran and colleagues [62] to navigate regulatory sequence space.

The unbiased data-driven approach of ML offers intriguing opportunities for increasing our under-

standing of gene regulation, provided that we can open the black boxes that many models are.

Even without this ability, genetic engineers striving to gain better control over their expression sys-

tems can benefit from using ML models trained on comprehensive sequence–activity datasets to

generate specific parts at will.
able? How should we integrate dy-

namic information such as chro-

matin conformation?
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