15. A R G E N T O M E T R I E

Při srážecích titracích dochází vzájemnou reakcí halogenidu X^{-} *a kationtu* Ag^{+} *k tvorbě málo rozpustného halogenidu stříbra podle rovnice :*

 $Ag^+ + X \Longrightarrow Ag\lambda$

V bodě ekvivalence jsou v roztoku vedle sraženiny halogenidu stříbrného i volné ionty halogenidové a stříbrné, jejichž rovnovážná koncentrace je definována součinem rozpustnosti Ks(AgX) vzniklé soli.

15.1. Potenciometrické stanovení titru odměrného roztoku 0,05 M AgNO₃ na standardní roztok NaCl (standardizace)

Při potenciometrické indikaci u srážecích argentometrických titrací se v průběhu titrace měří změny potenciálu indikační stříbrné elektrody v soustavě článku se srovnávací referentní elektrodou (nasycená kalomelová elektroda s kapalinovým můstkem KNO₃ nebo merkurosulfátová elektroda). Potenciometrem se měří rozdíl potenciálů obou elektrod jako napětí elektrochemického článku. V bodě ekvivalence, kdy je změna potenciálu největší, dochází k tzv. potenciálovému skoku. Z polohy inflexního bodu na potenciometrické křivce v potenciálovém skoku se na ose x odečte spotřeba titračního činidla V_{ekv} .

K dávkování odměrného roztoku dusičnanu stříbrného slouží automatická byreta, k vyhodnocení titrace grafický programovací jazyk LabVIEW. Standardizace se provádí na standardní roztok NaCl.

Příprava vzorku standardu:

1) Na analytických vahách odvážit s přesností na jednu desetinu mg přibližně 292 mg NaCl.

M(NaCl) = 58,443 g/mol

- Navážku rozpustit v 25 ml dest. H₂O, poté převést do odměrné baňky o V₀ = 100 ml, doplnit dest. H₂O po rysku
- Z takto připraveného roztoku pipetovat 10 ml do vysoké kádinky na 150 ml, vložit teflonové míchadlo an zředit 90 ml dest. H₂O.
- Titraci provést 2× (titraci ukončit po přídavku dvojnásobného množství odměrného roztoku, než je množství odpovídající V_{ekv})
 - a) první titrace slouží k vymezení oblasti potenciálového skoku (titrační činidlo přidávat po $\Delta V = 1$ ml, zaznamenávat změnu napětí v mV)
 - b) druhá titrace v oblasti potenciálového skoku v rozpětí $\pm 1,5$ ml (příp. v rozpětí $\pm 2,0$ ml) přidávat titrační činidlo po $\Delta V = 0,1$ ml zaznamenávat změnu napětí v mV (v programovacím jazyku LabView lze titrační činidlo přidávat pouze v rozmezí v rozpětí $\pm 2,0$ ml)

Práce s automatickou byretou:

- 1) Zapnout automatickou byretu tlačítkem *MAINS* na předním panelu.
- Byretu naplnit otočením levého nasávacího šroubu doprava (zkontrolovat zda je přívodní hadička ponořena v roztoku 0,05M AgNO₃).
- 3) Přepnout nasávací šroub do polohy "*Dávkování titračního činidla*" otočením doleva.
- 4) Na předním panelu přístroje nastavit rychlost dávkování tlačítkem SPEED na 5.
- 5) Nastavit objem dávkování 0,1 ml stlačením modrého tlačítka (100 µl).
- 6) Provést titraci pomocí bílého tlačítka START.

LabVIEW- Standardizace odměrného roztoku:

1) Spustit program Argentometrie v PC

- 2) Zapnout propojovací modul zeleným tlačítkem, dojde k rozsvícení oranžové kontrolky
- 3) Elektrody ponořit do roztoku, zapnout míchačku, ponořit hadičku dávkovače (automatické byrety)
- 4) Spustit program stlačením ikony *Start*
- 5) V okně s názvem *E (V)* se objeví hodnota naměřeného potenciálu. Stiskem tlačítka *Načíst do tabulky* zapsat tuto hodnotu do tabulky (hodnota potenciálu při objemu 0 ml)

🖻 Argentometrie. vi		
Eile Edit View Project Operate Tools Window Help		
Načítání hodnot	V (ml) E	[V]
	8,90 0,13	36 🔼
	9,00 0,14	10
Time	9,10 0,14	12
Po 1 ml Po 0,1 ml	9,20 0,14	15
	9,30 0,14	19
	9,40 0,15	5
vrani	9,50 0,16	0
19,00	9,80 0,18	31
	9,80 0,20	6
Načíst do tabulky 🛶	9,90 0,22	23
	10,0 0,23	32
E(V)	10,1 0,23	37
0,311	10,2 0,24	12
	10,3 0,24	15
	10,4 0,24	19
	10,5 0,25	53 🔽

- 6) Pomocí automatické byrety přidat do roztoku 1 ml AgNO₃
- 7) Počkat na ustálení potenciálu, poté načíst hodnotu potenciálu do tabulky (naskočí upozornění *Počkat na ustálení potenciálu*, odkliknout *OK*)
- Pokračovat s přidáváním odměrného roztoku po 1 ml, načítat jednotlivé hodnoty do tabulky (pokud se stane, že jako hodnota potenciálu naskočí 0, musí se počkat na odezvu měřícího zařízení, tj. nezaznamenávat hodnotu 0 do tabulky)
- 9) Po přídavku přibližně 20 ml přídavku odměrného roztoku, načíst graf titrační křivky pomocí tlačítka Načíst graf.

10) Přejít k části programu *Vyhodnocení titrace*. Stisknutím tlačítka *Vyhodnotit* (2×) se vypočítá objem bodu ekvivalence *V1* a načtou grafy první a druhé derivace (pravá hodnota *V1* je přesnější)

11) Po vyplnění jednotlivých oken výpočtů odpovídajícími údaji pomocí tlačítka *Vypočítat* zjistit hodnotu koncentrace odměrného roztoku AgNO₃ v mol/l.

Vpip	vo	V1	m NaC	
÷ 10	ml	ml 🖯 9,5	mi 292	mg
	Vypočítat		koncentrac	ce AgNO3
			0,0526	mol/l

- 12) Vypočítané hodnoty koncentrace a objem ekvivalence je potřeba zaznamenat do laboratorního deníku.
- 13) Poté kliknout na graf titrační křivky pravým tlačítkem myši a překopírovat obrázek grafu pomocí *Copy Data* do Wordu a uložit
- 14) V části programu *Ukončení měření* naměřená data uložit stisknutím tlačítka *Uložit*, soubor nejprve přejmenovat. Uložený soubor je k nalezení na disku C v souboru .txt.

Ukončení měření	
	Cesta k uložení výsledků
	% C:\Dataargentometrie.txt

16) Měření provedeme 2×. Při druhém měřen proměřit okolí bodu ekvivalence při dávkování 0,1 ml.

Určování ekvivalenčního bodu potenciometrické titrace

Bod ekvivalence lze určit: a) graficky - metodou tří rovnoběžek

b) početně

GRAFICKÉ VYHODNOCENÍ

V *Excelu* sestrojit graf - titrační křivku, tj. závislost napětí U na objemu přidávaného titračního činidla V_{AgNO_3} . Grafické určení bodu ekvivalence provést proložením dvou rovnoběžek vodorovnými částmi potenciometrické křivky, rozpůlením vzdálenosti mezi nimi, proložením třetí rovnoběžky získaným středem a určením průsečíku této třetí rovnoběžky s titrační křivkou.

POČETNÍ METODA URČOVÁNÍ INFLEXNÍHO BODU TITRAČNÍ KŘIVKY

Objem činidla odpovídající inflexnímu bodu titrační křivky V_{ekv} stanovit pomocí 2. diferencí následujícím způsobem.

Z naměřených hodnot sestavit tabulku:

V	ΔV	Е	ΔE	$\Delta E/\Delta V$	ΔE_2
0,05 M AgNO3					
ml	ml	mV	mV	mV/ml	mV

Závislost $(\Delta U_2/\Delta V)^2 = f(V)$ nabývá v inflexním bodě nulové hodnoty. Spotřebu V_{ekv} odpovídající této nulové hodnotě vypočítat s použitím poslední kladné a prvé záporné hodnoty 2. diference podle vztahu:

$$V_{ekv} = V^{+} + \Delta V \cdot \frac{\left(\Delta E^{+}\right)_{2}}{\left(\Delta E^{+}\right)_{2} + \left|\left(\Delta E^{-}\right)_{2}\right|}$$

kde: V_{ekv} je objem činidla v ml odpovídající inflexnímu bodu titrační křivky,
 V^+ je objem činidla v ml odpovídající poslední kladné 2. diferenci napětí ΔE_2 ,
 ΔV je konstantní přídavek činidla v ml, který se přidává v oblasti ekvivalenčního bodu,
 ΔE^+ 2 a ΔE^- 2 jsou poslední kladná a první záporná 2. diference E.

Výpočet přesné koncentrace odměrného roztoku AgNO3:

$$c(AgNO_3) = \frac{m(NaCl)}{M(NaCl)} \cdot \frac{V_{pip}}{V_0} \cdot \frac{1}{V_{ekv}}$$

kde: m(NaCl) je navážka chloridu sodného; M(NaCl) je molární hmotnost chloridu sodného; V_{pip} je pipetovaný objem roztoku chloridu sodného; V_0 je objem odměrné baňky; V_{ekv} je vypočtený bod ekvivalence

15.2. Potenciomerické stanovení chloridů v neznámém vzorku

Chloridy (stanovení pomocí argentometrické titrace v programu LabVIEW) reagují se stříbrnými ionty za vzniku bílé sraženiny chloridu stříbrného.

$$Ag^+ + Cl^- \longrightarrow AgCl\downarrow$$

Příprava vzorku:

- 1) Vzorek v odměrné baňce doplnit po rysku destilovanou vodou
- Z takto připraveného roztoku pipetovat 10 ml do vysoké kádinky na 150 ml, vložit teflonové míchadlo an zředit 90 ml dest. H₂O.
- Titraci provést 2× (titraci ukončit po přídavku dvojnásobného množství odměrného roztoku, než je množství odpovídající V_{ekv})

Stanovení neznámého vzorku chloridů pomocí programu LabVIEW:

- 1) Opět spustit program Argentometrie v PC
- 2) Jednotlivé kroky opakovat dle předchozího měření, vždy počkat na ustálení potenciálu, poté načíst hodnotu potenciálu do tabulky (naskočí upozornění *Počkat na ustálení potenciálu*, odkliknout *OK*)
- Titraci ukončit po přídavku dvojnásobného množství odměrného roztoku, než je množství odpovídající V_{ekv}
- 4) Poté načíst graf titrační křivky pomocí tlačítka Načíst graf.
- 5) Přejít k vyhodnocení titrace, stisknutím tlačítka *Vyhodnotit* (2×) se vypočítá objem bodu ekvivalence *V1* a načtou grafy první a druhé derivace (pravá hodnota *V1* je přesnější)
- Po vyplnění jednotlivých oken odpovídajícími údaji provést výpočet hmotnosti chloridů (jako koncentraci odměrného roztoku vložíme hodnotu opsanou z předchozí části úlohy) pomocí tlačítka Vypočítat.

V0	V1	c AgNO3	
ml 🗇 100	1 1 1 1 1		
m gan	ml 🕤 9,5	mi 0,05	mol/l
		hmotnost Cl	
Vypočítat		168,77 g	
	Vypočítat	Vypočítat	Vypočítat 168,77 g

- 7) Vypočítané hodnoty je potřeba si opsat do laboratorního deníku
- Poté kliknout na graf titrační křivky pravým tlačítkem myši a překopírovat obrázek grafu pomocí Copy Data do Wordu a uložit
- 9) V části programu *Ukončení měření* naměřená data uložit stisknutím tlačítka *Uložit*, soubor nejprve přejmenovat. Uložený soubor je k nalezení na disku C v souboru .txt.
- 10) Ukončit měření stiskem ikony Stop
- 11) Měření provedeme 2×. Při druhém měřen proměřit okolí bodu ekvivalence při dávkování 0,1 ml.

Výpočet obsahu Cl v neznámém vzorku:

$$m(Cl) = c(AgNO_3) \cdot V_{ekv} \cdot \frac{V_0}{V_{pip}} \cdot M(Cl)$$

kde: $c(AgNO_3)$ je koncentrace odměrného roztoku dusičnanu stříbrného; M(NCl) je molární hmotnost chloru, M(Cl) = 35,453 g/mol; V_{pip} je pipetovaný objem roztoku chloridu; V_0 je objem odměrné baňky; V_{ekv} je vypočtený bod ekvivalence (pro chloridy)

15.3. Potenciomerické stanovení směsi Cl a I v neznámém vzorku

Při srážecích titracích s potenciometrickou indikací lze stanovit ionty ve směsích, jestliže se součiny rozpustnosti postupně vznikajících sraženin liší řádově alespoň o 10³. Na titrační křivce se to projeví oddělenými potenciálovými skoky a víceesovitým tvarem.

Příprava vzorku:

- 1) Vzorek v odměrné baňce doplnit po rysku destilovanou vodou
- Z takto připraveného roztoku pipetovat 10 ml do vysoké kádinky na 150 ml, vložit teflonové míchadlo an zředit 90 ml dest. H₂O.
- Titraci provést 2× (titraci ukončit po přídavku dvojnásobného množství odměrného roztoku, než je množství odpovídající V_{ekv})

První inflexní bod na titrační křivce určuje objem titračního činidla V_{ekv1} spotřebovaný na vysrážení jodidů, rozdíl mezi V_{ekv2} a V_{ekv1} určuje objem titračního činidla spotřebovaný na reakci s chloridovými anionty.

Stanovení neznámého vzorku chloridů a jodidů pomocí programu LabVIEW

- 1) Opět spustit program Argentometrie v PC
- Jednotlivé kroky opakovat dle předchozích měření, vždy počkat na ustálení potenciálu, poté načíst hodnotu potenciálu do tabulky (naskočí upozornění *Počkat na ustálení potenciálu*, odkliknout *OK*)
- Titraci ukončit po přídavku dvojnásobného množství odměrného roztoku, než je množství odpovídající V_{ekv}. Pokud se stane, že jako hodnota potenciálu naskočí 0, musí se počkat na odezvu měřícího zařízení, tj. nezaznamenávat hodnotu 0 do tabulky)
- 4) Poté načíst graf titrační křivky pomocí tlačítka Načíst graf.
- 5) Přejít k vyhodnocení titrace, stisknutím tlačítka *Vyhodnotit* (2×) se vypočítá první objem bodu ekvivalence pro jodidy a zobrazí se grafy první a druhé derivace.
- 6) Druhý bod ekvivalence pro chloridy se vypočítá ručně. V tabulce je potřeba najít objem, který odpovídá druhému bodu ekvivalence. Hodnoty v okolí tohoto objemu přepsat do oken pro výpočet druhého bodu ekvivalence (objem i potenciál). Do okna změna V zadat hodnotu kroku (buď 1 ml nebo

0,1 ml). Po kliknutí na tlačítko *Vyhodnotit* získáme hodnoty druhé diference. Z těchto hodnot vybrat zápornou hodnotu následovanou kladnou, opsat je do oken E+, E- (E- opíšeme 2× bez znaménka). Do okénka V+ zadat hodnotu objemu, ke kterému náleží E+ a E-. Kliknout na tlačítko vyhodnotit 2×, spočítá se druhý bod ekvivalence pro chloridy. Tento výpočet probíhá podle vzorce:

$V = V^+ \pm AV$	$\left(\Delta E^{+}\right)_{2}$
$v_{ekv} = v + \Delta v$	$(\Delta E^+)_2 + (\Delta E^-)_2 $

Obrázek: Příklad výpočtu druhého bodu ekvivalence.

 Po vyplnění jednotlivých kolonek pro výpočet hmotnosti chloridů a jodidů odpovídajícími údaji pomocí tlačítka *Vypočítat* získáme požadované hodnoty.

Vý	počet	hm	otnos	sti Cl a	1					
V1		ml	V2 ☆ 9,5	;	ml	V0	ml	Vpip	c AgNO ml 🗍 0,05)3 mol/l
Vypočítat		hn	notne	ost I	hmotno	ost Cl				
	vypocitat	22	22,1	g	106,3	g				

Výpočet probíhá podle rovnic:

Výpočet obsahu I v neznámém vzorku:

$$m(I) = c(AgNO_3) \cdot V_{ekv1} \cdot \frac{V_0}{V_{pip}} \cdot M(I)$$

Výpočet obsahu Cl v neznámém vzorku:

$$m(Cl) = c(AgNO_3) \cdot (V_{ekv2} - V_{ekv1}) \cdot \frac{V_0}{V_{pip}} \cdot M(Cl)$$

kde: $c(AgNO_3)$ je koncentrace odměrného roztoku dusičnanu stříbrného;
M(Cl) je molární hmotnost chloru;
M(I) je molární hmotnost jodu;
 V_{pip} je pipetovaný objem neznámého roztoku chloridů a jodidů;
 V_0 je objem odměrné baňky;
 V_{ekvl} je vypočítaný bod ekvivalence jodidů;
 V_{ekv2} je vypočítaný bod ekvivalence pro chloridy.

- 8) Vypočítané hodnoty je potřeba si opsat do laboratorního deníku
- 9) Poté kliknout na graf titrační křivky pravým tlačítkem myši a překopírovat obrázek grafu pomocí *Copy Data* do Wordu a uložit
- 10) V části programu *Ukončení měření* naměřená data uložit stisknutím tlačítka *Uložit*, soubor nejprve přejmenovat. Uložený soubor je k nalezení na disku C v souboru .txt.
- 11) Ukončit měření stiskem ikony Stop 🖳
- 12) Měření provedeme 2×. Při druhém měření proměřit okolí bodu ekvivalence při dávkování 0,1 ml.

M(I) = 126,9 g/mol

M(Cl) = 35,453 g/mol

15.4. Vyhodnocení analýzy

Při vyhodnocení stanovení Cl⁻ a směsi Cl⁻ a l⁻ v neznámém vzorku v protokolu do závěru uvést:

- hodnoty nalezených hmotností Cl⁻ v neznámém vzorku č.1 v mg zaokrouhlené na platný počet míst (početní i grafickou metodou).
- hodnoty nalezených hmotností Cl⁻ a l⁻ v neznámém vzorku č.2 v mg zaokrouhlené na platný počet míst (početní i grafickou metodou).
- srovnání grafické a početní metody určování inflexního bodu při argentometrickém stanovení.
- zdůvodnění možného chybného stanovení.