NUCLEIC ACIDS

Basic terms and notions Presentation by Eva Fadrná adapted by Radovan Fiala

Literature

Books

Saenger, W., Principles of Nucleic Acid Structure, Springer 1984.

Bloomfield, V. A., Crothers, D. M., Tinoco, I., Nucleic Acids, Structures, Properties, and Functions, Univ. Sci. Books, 2000.

Wuthrich, K., NMR of Proteins and Nucleic Acids, Wiley, 1986.

Review articles

Bowater, R. P., Waller, Z. AE., DNA Structure, In: eLS. John Wiley & Sons, Chichester, 2014.

Wijmenga, S. S., van Buuren, B. N. M., The use of NMR methods for conformational studies of nucleic acids, Progr. NMR Spect. 32, (1998), 287-387.

Furtig, B. et al., NMR of RNA, ChemBioChem 4 (2003), 936-962.

RNA vs DNA

Single strand A-RNA B-DNA duplex

Length of NA

Total length of DNA in a human cell1 m(1000 km)DNA in typical human chromozome1 cm(10 km)DNA from bacterial chromozome1 mm1 mmDiameter of typical human cell0.01 mm0.01 mmDiameter of folded DNA $0.1 \mu \text{m}$ 0.1 mDiameter of DNA fiber1 nm1 mmDiameter of atom1 Å

(multiplied by 10⁶)

 \Rightarrow 1 chromozome would be 10km long with fiber diameter of 1 mm and it would fold into 10 cm diameter \Rightarrow extraordinary DNA flexibility

major vs. minor

deoxythymidine

Nukleotide/nukleoside

Base numbering

guanine

PURINES

PYRIMIDINES

thymine

Base tautomerism

Sugar - pentoses

Other aldopentoses: arabinose, xylose, lyxose

Nukleosides

Nukleosides

Ribonukleosides

uridine	= U
cytidine	= C
adenosine	= A
guanosine	= G

Deoxyribonukleosides

deoxythymidine	= dT
deoxycytidine	= dC
deoxyadenosine	= dA
deoxyguanosine	= dG

Phosphate group

Nukleotides

Ribonucleotides

uridyl acid cytidyl acid adenyl acid guanyl acid

= uridine – 5´monophosphate = UMP, pU = cytidin -"- = CMP, pC = adenosin -"- = AMP, pA = guanosin -"- = GMP, pG

Deoxyribonucleotides

deoxytymidyl acid = 2'deoxythymidine-5'-monophosphate = dTMP, pdT deoxycytidyl acid = -"- cytidin -"- = dCMP, pdC deoxyadenyl acid = -"- adenosin -"- = dAMP, pdA deoxyguanyl acid = -"- guanosin -"- = dGMP, pdG

Nucleotide chain

Torsion angle

<-180°, 180°>

Torsion angle

synperiplanar (sp)

-gauche (-g)

synclinal (sc)

anticlinal (ac)

antiperiplanar (ap)

Torsion angles in NA

Sugar-phosphate backbone

Torsion angles cont.

Torsion angle χ

SYN:

Pyrimidines:O2 above the sugar ringPurines:6-member purine ring above the sugar ring

Torsion angle χ

Orientation around the C1' – N glycosidic bond

O4' - C1' - N1 - C2 pyrimidines O4' - C1' - N9 - C4 purines

Torion χ – border intervals

high-syn (corresponds to +ac) ... 90° +intrudes into antihigh-anti (corresponds -sc) ... 270° +intrudes into syn

Torsion angles in DNA

Angle	B-DNA	
α	-40.7	
β	-135.6	
γ	-37.4	
$ > \delta $	139.5	
3	-133.2	
ζ	-156.9	
$ \longrightarrow \chi $	-101.9	

A-DNA -74.8 -179.1 58.9 78.2 -155.0 -67.1 -158.9

Sugar conformation

"Puckering" of the sugar ring

invelope 4 atoms in a plane, the 5th above or below

Twist

3 atoms in a plane, the 4^{th} and the 5^{th} on the oposite sides of the plane

Definition of the puckering modes

The sugar ring is not planar With respect to C5' - endo Envelope C3'-endo (prevalent in RNA) ³E Envelope C2'-endo ²E (prevalent in DNA) symmetric Twist C2'-exo-C3'-endo ${}^{3}_{2}T$ Non-symmetric Twist C3'-endo-C2'-exo ${}^{3}T_{2}$

Pseudorotation cycle

Theoretically – infinite number of conformations, can be characterized by maximum torsion angle (degree of pucker) and pseudorotation phase angle Torsion angles are not independent (ring closed)

Pseudorotation phase angle P

$$\tan P = \frac{(v_4 + v_1) - (v_3 + v_6)}{2 \cdot v_2 \cdot (\sin 36^\circ + \sin 72^\circ)}$$

 $P = 0^{\circ}$:

symmetric Twist C2'-exo-C3'-endo 32T

P = 180° :

asymmetric Twist C2'-endo-C3'-exo ²₃T

v_{max} amplitude

Maximum out-of-plane pucker

$$v_{max} = v_2 / \cos(P)$$

P, v_j relation

P value defines unambiguously all endocyclic torsion angles v_0 to v_4

$$v_{2} = v_{max} \cdot \cos(P + (j - 2) \cdot 144^{\circ}) \qquad j = 0 ... 4$$

$$v_{0} + v_{1} + v_{2} + v_{3} + v_{4} = 0 \qquad \text{Sum of all } 5 v = 0$$

P in nucleic acids

 $0^{\circ} \leq P \leq 36^{\circ}$ north (prevalent in RNA)

 $144^{\circ} \leq P \leq 190^{\circ}$ south (prevalent in DNA)

Helical parameters

axis-base, axis-base pair intra-base pair

inter-base or inter-base pair

Helical parameters

for A and B DNA

Global	B-DNA	A-DNA	Shifts in Å, ang	gles in degrees	
X disp.	0.0	-5.28			
Y disp.	0.0	0.0			
Inclin	1.46	20.73		ZX	
Тір	0.0	0.0		Inclination	
Shear	0.0	0.0		inclination	
Stretch	0.0	0.01			
Stagger	-0.08	-0.04			
Buckle	0.0	0.0			
Propeller	-13.3	-7.5			
Openning	0.0	-0.02			
Shift	0.0	0.0			
Slide	0.0	0.0		\sim	
Rise	3.38	2.56			
Tilt	0.0	0.0			\sim
Roll	0.0	0.0		Rise	Lit
Twist	36.00	32.70			
			=11		Twist

Base pairing

Watson-Crick pairs

Base pairing

Hoogsteen and reverse Hoogsteen pairs

A and B double helix

A-RNA

Ball and stick models

A and B helices

A and B helices

View tilted by 32° to show grooves

Nuclear properties of selected isotopes

Isotope (I=¥2)	$\gamma \times 10^{-7} v$ (rad T ⁻¹ s ⁻¹)	at 11.74T (MHz)	Natural Abundance	(%)	Sensitivity	
					Rel.a	Abs.b
1 _H	26.75	500.0	99.98		1.00	1.00
¹³ c	6.73	125.7	1.11	1	.6x10 ⁻²	1.8x10 ⁻⁴
15 _N	-2.71	50.7	0.37	1	.0x10 ⁻³	3.8x10 ⁻⁶
31 _P	10.83	202.4	100	6	.6x10 ⁻²	6.6x10 ⁻²

¹ Relative sensitivity at constant field for equal number of nuclei. ² Product of relative sensitivity and natural abundance.

Spin systems in ribose and deoxyribose

Spin systems in nucleic acid bases

¹H chemical shift ranges in DNA and RNA

¹H chemical shift ranges in DNA and RNA

Code	δ (ppm)	Comments
2'	1.8-3.0	2'H, 2"H in DNA
4',5'	3.7-4.5	4'H, 5'H, 5"H in DNA
3'	4.4-5.2	3'H in DNA
	3.7-5.2	2'H, 3'H, 4'H, 5'H, 5"H in RNA
1'	5.3-6.3	1'H
CH3	1.2-1.6	CH ₃ of T
5	5.3-6.0	5H of C and U
6	7.1-7.6	6H of C, T and U
2,8	7.3-8.4	8H of A and G, 2H of A
- NH ₂ *	6.6-9.0	NH ₂ of A, C and G
> NH*	10 - 15	Ring NH of G, T and U

¹H NMR spectrum of d(CGCGAATTCGCG)

¹H NMR spectra in H₂O

¹H COSY spectrum of DNA

a H2'-H2"
b H4'-H5',5" H5'-H5"
c H3'-H4'
d H2',2"-H3'
e H1'-H2',2"
f H5-H6 (Cyt)
g CH₃-H6 (Thy)

¹H TOCSY spectrum of DNA

d(CGCGAATTCGCG)₂

a H4'-H2',2" b H1'-H3'

¹H NOESY spectrum of DNA in D₂O

d(CGCGAATTCGCG)₂

¹H NOESY spectrum of DNA in H₂O

Water Suppression

The presence of an intense solvent resonance necessitates an impractical high dynamic range. 110 M vs <1mM

To overcome this problem several methods are currently applied:

- 1) Presaturation.
- 2) Observing the FID when the water passes a null condition after a 180 degree pulse.
- 3) Suppression of broad lined based on their T_2 behavior.
- 4) Selectively excitation, with and without gradients
- 5a) Use of GRASP to select specific coherences thereby excluding the intense solvent signal. In this case the solvent signal never reaches the ADC. This allows the observation of resonances that are buried under the solvent peak.
- 5b) Use of GRASP to selectively dephase the solvent resonance (WATERGATE)

WEFT

Presaturation field strength: 20-40 Hz corresponds to a 6-12ms 90deg pulse.

- Pros: Easy to set up Excellent water suppression
- Cons: Resonances under water signal! (T variation) Labile protons not visible (some GC pairs may be)

Method relies on different T₁ values for water and solute.

It fails if the relaxation times are similar. Intensity of the solute resonances may vary. For a selective 180 degree pulse on the solvent these problems are largely avoided.

Jump and return

- Pros: Easy to set up Excellent water suppression (with proper setup as good as presat) Good for broad signals!
- Cons: Non uniform excitation Baseline not flat

Other sequences: 1331 etc

WATERGATE

Structure Determination Procedure

Structure Determination:

- I) Assignment
- II) Local Analysis
 - •glycosidic torsion angle
 •sugar puckering
 •backbone conformation
 •base pairing
- III) Global Analysis

 sequential
 inter strand/cross strand
 dipolar coupling

NOESY, COSY, HSQC TOCSY.....

(NOE, <u>COSY</u>) (COSY, NOE) (COSY) (NOE, <u>COSY</u>)

(NOE, COSY) (NOE, <u>COSY</u>) (HSQC, <u>HSQC</u>)

Resonance Assignment

- A) Exchangeable protons:
- B) Non-exchangeable protons
- Aromatic Spin Systems:
- Sugar Spin Systems:
- Sequential Assignment:

C) Correlation of exchangeable and non-exchangeable protons:

1D ¹H, 2D NOESY

2D DQF-COSY (H5-H6), 2D NOESY

2D DQF-COSY 2D TOCSY

2D NOESY 2D (³¹P, ¹H) HETCOR

2D NOESY

Sequential connectivities with exchangeable protons

Dickerson's dodecamer d(CGCGAATTCGCG)₂

imino-amino

imino-imino

Sequential resonance assignments

H6/8-H2',2"/Me

H6/8-H1'

d(CGCGAATTCGCG)₂

d(CGCGAATTCGCG)2

³¹P spectrum of DNA

Assignment of Sugar-Phosphate Backbone

¹H - ³¹P correlation spectrum

 ^{1}H
Sugar puckering

 $\delta = v_3 + 125^\circ$

The five membered furanose ring is not planar. It can be puckered in an envelope form (E) with 4 atoms in a plane or it can be in a twist form. The geometry is defined by two parameters: **the pseudorotation phase angle (P)** and the **pucker amplitude** (Φ).

04'

In general: RNA (A type double helix) C3' endo. DNA (B type double helix) C2' endo.

$$v_i = \Phi_m \cos (P + 144 \ (j-2))$$

Ribose: ³J_{H1'-H2'} ≈ 1 Hz Deoxyribose: ³J_{H1'-H2'} ≈ 1.8 Hz

J-couplings from COSY spectra

9°	36°	72°	90°
		0 0 • • © ©	
108°	144°	162°-	180°
88 88	00 00	od ¢ô	00 ÕÕ
216`	252°	288°	324°
© • • ©			
0.0			
	- I	Ц Ч1′	

(ь)	9°	36°	72°	90°]
	00 00 00	99 88	0 0		
	108°	144°	162°	180°	
		() 0 0 () 9 · · · 9 9 0 0 9	0 0 0 0 0	0 9 9 0	H2″
ŀ	216°	252°	288°	324°	
	000		ତୁତ୍ର ତୁତ୍ର	© D 0 D	
L		н	[

P determination from J-couplings

Ρ

Equilibrium of N and S conformations

Distance information determines the glycosidic torsion angle

How do we get distance information?
 Nuclear Overhauser effect (< 6Å)

Structure Determination:

- I) Assignment
- II) Local Analysis

•glycosidic torsion angle, sugar puckering,backbone conformation base pairing

III) Global Analysis•sequential, inter strand/cross strand, dipolar coupling

Nucleic Acids have few protons.....
•NOE accuracy

> account for spin diffusion

•Backbone may be difficult to fully characterize

> especially α and ζ.
•Dipolar couplings

What do we know? •Distance, Torsion, H-Bond constraints

What do we want?

Low energy structures

Methods

- •Distance Geometry
- •Simulated annealing, rMD
- •Torsion angle dynamics (DYANA)
- Mardigras/IRMA/Morass

