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System of two electrons

Figure 4.4. A system of two
electrons: e; and e;. The path
difference between the
scattered waves 1 and 2

s p+gqg.

So and s are wave vectors of magnitude 1/A
p=AMANTr-S
g = —NT-8S

minus sign is due to the fact that the projection of r on s has a direction opposite to s

p+qg=Nr1-(5—8).




Figure 4.4. A system of two
electrons: e; and e;. The path
difference between the
scattered waves 1 and 2 S0
isp+gq. >

1Lne wave along electron e; 18 1agging penina in pnase comparea witn tne wave
along e;. With respect to wave 1, the phase of wave 2 is

2Tr-(Sg —S) - A
A

= 27tr - S,

where

S=8—5 (4.1)



It is interesting to note that the wave can be regarded as being reflected against a
plane with 0 as the reflecting angle and | S| = 2(sin 0)/\ (Figure 4.5). The physical
meaning of vector S is the following: Because S = s — sg, with |s| = |sg| = 1/A,
S is perpendicular to the imaginary “reflecting plane,” which makes equal angles
with the incident and reflected beam.
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Figure 4.5. The primary wave, repre-
sented by sg, can be regarded as being
reflected against a plane. 0 is the reflect-
ing angle. Vector S is perpendicular to this

plane.
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If we add the waves 1 and 2 in Figure 4.4, the Argand diagram shows two
vectors, 1 and 2, with equal length (amplitude) and a phase of 27rr - S for wave 2
with respect to wave 1 (Figure 4.6). Vector T represents the sum of the two waves.
In mathematical form: T=1 + 2 =1 4 1 exp[2mir - S] if the length of the vectors
equals 1. So far we had the origin of this two-electron system in e;.

Figure 4.6. The summation of
the two scattered waves in
Figure 4.4 with the origin in
electron e;.




Figure 4.7. The origin, or reference point, for the scattered waves of the two-electron system
is now located at O.

Suppose we
move the origin over —R from e; to point O (Figure 4.7). Then we obtain the

following: With respect to a wave (, wave 1 has a phase of 27R - S, and wave 2
has a phase of 27(r + R) - S (Figure 4.8)
T=142=exp[2wiR - S] 4+ exp[2mi(r + R) - S]
= exp[2miR - S]{1 + exp[2mir - S]}
Conclusion: A shift of the origin by —R causes an increase of all phase angles by

27R - S. The amplitude and intensity (which is proportional to the square of the
amplitude) of wave T do not change.



Figure 4.8. The summation of waves 1 and 2 with
the origin of the two-electron system in position O.

Suppose we
move the origin over —R from e; to point O (Figure 4.7). Then we obtain the

following: With respect to a wave (, wave 1 has a phase of 27R - S, and wave 2
has a phase of 27(r + R) - S (Figure 4.8)
T=142=exp[2wiR - S] 4+ exp[2mi(r + R) - S]
= exp[2miR - S]{1 + exp[2mir - S]}
Conclusion: A shift of the origin by —R causes an increase of all phase angles by

27R - S. The amplitude and intensity (which is proportional to the square of the
amplitude) of wave T do not change.



Scattering by an atom

s p(r ) Figure 4.9. The electron cloud of an atom. p(r) is
R the electron density. Because of the centrosymme-

try, p(r) = p(—r).

NN

f =fp(r) exp[2mir - S]dr, (4.2)



p(r)dv

Figure 4.10. The scattering factor f of an
atom is always real if we assume centrosym-
metry of the electron cloud. The imaginary
part of every scattering vector is compen-
sated by the imaginary part of a vector with
p(-r)dv :iqgl:lal length but a phase angle of opposite

= j p(r) {exp[2mir - S] + exp[—2mwir - S]} dr

= 2 fp(r) cos[27r - S]dr.

r



Scattering by an atom depends of the
length of |S| (resolution)

0 1 2 3 4 A
2sinB
A

Figure 4.11. The scattering factor f for a carbon atom as a function of 2(sin0)/A. f is
expressed as electron number, and for the beam with 6 =0, f = 6.



Scattering by a unit cell

Suppose a unit cell has n atoms at positions r; (j =1, 2, 3, ..., n) with respect
to the origin of the unit cell (Figure 4.12). With their own nuclei as origins, the
atoms diffract according to their atomic scattering factor f. If the origin is now
transferred to the origin of the unit cell, the phase angles change by 27r; - S. With
respect to the new origin, the scattering is given by

f; = fjexp[2mir; - 8],

Figure 4.12. Aunitcell with three
atoms (1, 2, and 3) at positions r;,
I, and I's.




Figure 4.13. The structure factor
F(S) is the sum of the scattering by
the separate atoms in the unit cell.

unit cell is

F(S) = Z f; exp[2mir; - SI. (4.3)
=1

J

F(S) is called the structure factor because it depends on the arrangement (structure)
of the atoms in the unit cell (Figure 4.13).



Scattering by a crystal

Suppose that the crystal has translation vectors a, b, and ¢ and contains a large
number of unit cells: n; in the a direction, n, in the b direction, and n3 in the ¢
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C
d
tatub+v.e 7 The scattering of this unit cell
- with O as origin is :
[ F(S)exp[2nit.a.S]exp[27tiu.b.S]exp[2niv.c.S)
C
/
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The scattering of this unit cell

with O as origin is F(S)

Figure 4.14. A crystal contains a large number of identical unit cells. Only two of them are
drawn in this figure.



To obtain the scattering by the crystal, we must add the
scattering by all unit cells with respect to a single origin. We choose the origin O
in Figure 4.14. For a unit cell with its own origin at position ¢t -a+u -b + v - ¢,

in which ¢, u, and v are whole numbers, the scattering is

F(S) x exp[2mita - S] x exp[2mwiub - §] x exp[2mive - S].

The total wave K(S) scattered by the crystal 1s obtained by a summation over all
unit cells:

ny Hy LK
K(S) = F(S) x ) exp[2mita-S] x ) exp[2miub-S]x ) exp[2mive - S].
t=0 u=0 =0



The total wave K(S) scattered by the crystal is obtained by a summation over all
unit cells:

n Ky ULE]
K(S) = F(S) x Y exp[2mita-S] x ) exp[2miub-S] x Y _exp[2mive - S].
t=0 u=0 =0

Because n, ny, and n; are very large, the summation Z:h:o exp|2mita - S] and the
other two over u and v are almost always equal to zero unless a - S is an integer
h, b .S is an integer k£, and ¢ - S 1s an integer [. This is easy to understand if we
regard exp[2mita - 8] as a vector in the Argand diagram with a length of 1 and a
phase angle 21rra - S (see Figure 4.15).

Figure 4.15. Each arrow repre-
sents the scattering by one unit
cell in the crystal. Because of the
huge number of unit cells and
because their scattering vectors
are pointing in different direc-
tions, the scattering by a crystal is,
in general, zero. However, in the
special case thata - Sis an integer

h, all vectors point to the right and
the scattering by the crystal can be
of appreciable intensity.




a-S=~nh
b-S=k%, (4.4)
c-S=1

These are known as the Laue conditions. k, k, and [ are whole numbers, either
positive, negative, or zero. The amplitude of the total scattered wave 1s proportional
to the amplitude of the structure factor F(S) and the number of unit cells in the
crystal.



Calculation of electron density

The structure factor is a function of the electron
density distribution in the unit cell:

FS) =Y f; exp[2mir, - S). (4.3)
F(S) = f p(r)exp[2mir; - S]dv. (4.8)
cell

where p (r) i1s the electron density at position r in the umt cell. If x, y, and z are
fractional coordinates in the unit cell (0 < x < 1; the same for y and z) and V is

the volume of the unit cell, we have
dv=YV -dxdydz
and
r-S=@-x+b-y+c¢c-z2)-S=a-8:-x+b-S:-y+¢-8.z2
= hx +ky +1z.
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Information from X-ray diffraction

experiment
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Figure 4.22. The plot of an
organic molecule with 50%
probability of thermal
ellipsoids. (Reproduced with
permission from Strijtveen
and Kellogg (©) 1987
Pergamon Press PLC.)




F(S) = f p(r)exp[2mir; - S]dv. (4.8)

cell

1 1 1
F(hkf):Vf f fp(xyz)exp[%i(hx+ky+£z)]dxdydz. (4.9)

x=0 y=02z=0



1 1 1
F(hkl)=V f f f p(x y2)exp2mi(hx + ky + I2)]dxdydz.  (4.9)

x=0 y=02z=0

F(h k1) 1s the Fourler transform of p(x y z), but the reverse 1s also true: p(x y z)

1s the Fourier transform of F(h k) and, therefore, p(x y z) can be written as a
function of all F(h k [):

p(xyz) = % Y Y ") F(hk lexp[—2mi(hx + ky + I2)]. (4.10)
h k [

The Laue conditions tell us that diffraction occurs only in discrete directions and,
therefore, in Eqation (4.10), the integration has been replaced by a summation.
Because F = [} exp[., we can also write

Py = > 3057 3 I exp (2 I+
h k I

(4.11)



Notes

1. F(h k) is the Fourier transform of the electron density p(x y z) in the entire

unit cell. Often the unit cell contains more than one molecule. Then F(h k [) 1s
composed of the sum of the transforms of the separate molecules at position

(h k 1) in reciprocal space.

2. Because of the crystallographic repeat of the unit cells, the value of the transform
F(h k [) 1s zero 1n between the reciprocal space positions (4 k [). If there were no
crystallographic repeat, the transform would be spread over the entire reciprocal
space and its value is not restricted to reciprocal space positions (k, k £).
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Intensity diffracted by a crystal

—

Figure 4.29. Most crystals are imperfect and can be regarded as being composed of small
mosaic blocks.




We have the following assumptions:

1. Apart from ordinary absorption, the intensity Iy of the incident beam is the same

throughout the crystal.
2. The mosaic blocks are so small that a scattered wave is not scattered again (i.e.,

multiple scattering does not occur).
3. The mosaic blocks scatter independently of each other.

With these assumptions, the expression for I (int., 4 k[), if the crystal is rotated
with an angular velocity w through the reflection position, is

3 2\ 2
I(int., hkl) = A x [ - XVoxIgyxLxPxT. x|F(hkD|*.
w- V2 mc?
(4.32)
A —wavelength |, — intensity of the excitation beam
w — angular velocity of crystal L — Lorentz coefficient
rotation P — polarization coefficient
V — unit cell volume T, — transmission coefficient
e — electron charge | F(hkl)| - structure factor amplitude

m — electron mass
c —speed of light
V., — crystal volume



Effect of the unit cell size on the diffraction

intensity
2
, A\ e’
I(int., hkl) = X| — ) xVyoxIgxLxPxT, x|F(hkD|?
w- V>2 mc?

Figure 4.36. The displacement of a particle

under the influence of Brownian motion.

For n steps, where n is very large and each
f step has alength f, the final distance to the

- origin is f./n.

\/IF(};H)IE = fx+/n and |F(hkD* = f* x n.

Combining the effect of the unit cell volume V and |F(h k)| in the scattering
equation (4.32) leads to

|F(hkD|>  f?
= T X N

I(int., h k1) is proportional to 2

(4.36)



Friedel pairs

Fhkl) = Vf p(x yz)exp[2mi(hx + ky + Iz)]dx dydz
cell

F(hkD) =V f p(x yz)exp[2mi(—hx — ky —1z)]dx dydz. (4.25)

cell

Figure 4.24. Argand diagram for the struc-
ture factors of the reflections F(h k) and
F(hkl).

+50
0 (xy27) = % 3" |F(hk )| cos[2m(hx + ky + I2) — ah k 1))
hki=0




One more comment on lattice planes: If the beam A k[ corresponds to reflection
against one face (let us say the front) of a lattice plane, then (k& [) [or (—h, —k, —I)
corresponds to the reflection against the opposite face (the back) of the plane

(Figure 4.20). reciprocal lattice line
with h k 1 in reflection position

front face of

lattice plane Ewald sphere

- origin of the
g reciprocal lattice

opposite face of
lattice plane

same reciprocal lattice line

with h k| in reflection position



Symmetry in the diffraction pattern
4.12.1. A 2-Fold Axis Along y

If a 2-fold axis through the origin and along y is present, then the electron density
p(x yz) = p(x y 7) (Figure 4.25). Therefore,

Fhk)=V f p(x yz){exp[2mi(hx + ky + [Z)]

asymim
unit

+ exp[2mi(—hx + ky — I2)]}dx dy dz (4.26)

The integration in Eq. (4.26) is over one asymmetric unit (half of the cell), because
the presence of the second term under the integral takes care of the other half of
the cell.

Fhk) =V f p(x y 2){exp[2mi(—hx + ky — 12)]

asymm
unit

+ exp[2mi(hx + ky + [z)]}dxdydz (4.27)

It follows that F(hkl) = F(h k) and also I(hkl) = I(hk]),






4.12.2. A 2-Fold Screw Axis Along y

For a 2-fold screw axis along y (Figure 4.26),

p(xyz)=p{x(y +1/2)z}
te)m I |

Fhk=V [ pGxyoiesi2mitis +ky +12)

asymm
unit

+ exp[2mi(—hx + k(y +1/2) —I2)]}dxdydz  (4.28)
term 1I 4

term III |
Fthkh=V f p(x yz){exp[2mi(—hx + ky — [7)]

asymin
unit

+ exp[2mi(hx + k(y + 1/2) + [z)]}dx dy dz. (4.29)
term 1V 1



In Equation (4.28), term II is

exp{2mi[—hx + k(y + 1/2) — Iz]} = exp[2mwi(—hx + ky — Iz + 1/2k)].
For k even, this is equal to term 11l in Equation (4.29). The same is true for term IV in
Equation (4.29) and term [ in Equation (4.28). Therefore, when kiseven, F(h k [) =

F(hkl)and I(hkl = I(hkl). When k is odd, terms I and IV have a difference
of 7 in their phase angles: 2mw(hx + ky + [z) and 2w(hx + ky + [z + 1/2k).

For F(hkl) with k odd:

F(hkl)

F(hk])




1/2 unit cell
translation




Systematic absences in P2(1)

F(OkO) =V j o (x y z){exp[2miky] + exp[2mik(y + 1/2)]} dx dy dz.

ASymim
unit

(4.30)

When k is even, this is 2 x V fp(x yz)exp[2mikyldxdydz. However,
when k is odd, the two terms in Equation (4.30) cancel and F(0k0) =10
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