Structural Biology
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Lecture #4



Phase problem
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Solving the phase problem by:

Multiple/Single Isomorphous Replacement (MIR/SIR)

e source of phases — intensity differences between data from native and
derivative (heavy atom containing) crystals

e Positions of heavy atoms identified from isomorphous difference
Patterson maps



Solving the phase problem 3

Multiple/Single-wavelength anomalous diffraction
(MAD/SAD)

source of phases — intensity differences between structure factors due to the
presence of atom that specifically interacts with X-rays of a given wavelength

Positions of heavy atoms identified from anomalous difference Patterson
maps



Phase problem

1
plrya) = Y " |F(hk1)| exp[—2mi(hx + ky + I2) + (| (7.1)

hkl

Patterson function

P(uvw) = %Z IF(hkD)|?cos[2m(hu + kv + lw)]; (7.2)
hkl

or, shorter,

P(u) = %Z |F(S)|% cos[2mu - S] (7.3)

PLa@) = [ 91030 x pa(x+ukix (107
Vv
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Figure 7.1. (a) A two-dimensional unit cell with only two atoms. (b) The corresponding
Patterson cell.
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Figure 7.2. (a) A two-dimensional unit cell with three atoms. (b) The corresponding Patter-
son map. Note the large increase in the number of Patterson peaks compared with Figure 7.1.
The total number of peaks is N2, but the N self-peaks overlap at the origin and, therefore,
N (N — 1) nonorigin peaks are found 1n a Patterson map. Because of the centrosymmetry in
the map, the number of unique peaks is [N(N— 1)]/2; in this figure, 1 — 2, 1 — 3, and 2
—> 3 are unique peaks.



. The Patterson map has peaks at end points of vectors u equal to vectors between
atoms in the real cell.

. For every pair of atoms in the real cell, there exists a unique peak in the Patterson
map.

. A Patterson map is always centrosymmetric.

. Symmetry elements can cause a concentration of peaks in certain lines or planes:
“Harker lines” or “Harker nlane<”

. In locating Patterson peaks of heavy atoms in the isomorphous replacement
method, it is useful to realize that the height of a peak is proportional to
the product of the atomic numbers of the atoms that are responsible for the

peak.

Patterson map of a macromolecule is a mess!



Isomorphous replacement method




. Preparation of at least one, but preferably a few heavy-atom-containing deriva-
tives of the protein in the crystalline state. A first check for isomorphism 1is
measuring the cell dimensions.

. X-ray intensity data must be collected for crystals of the native protein as well
as for crystals of the derivatives.

. Application of the Patterson function for the determination of the heavy atom
coordinates.

. Refinement of the heavy atom parameters and calculation of the protein phase
angles.

. Calculation of the electron density of the protein.



Isomorphous replacement method

Figure 7.6. A comparison of the diffraction photographs of the same reciprocal lattice plane
for a native papain crystal and a heavy atom derivative in which one mercury atom was
attached to each protein molecule. Appreciable differences in intensity between correspond-
ing diffraction spots can be seen.



Figure 7.8. Structure factors in
the isomorphous replacement
method for noncentric reflec-
tions; the horizontal direction of
Fp is arbitrary.
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Fe F. Figure 7.7. Structure factors in the iso-
> )l morphous replacement method for cen-
> tric reflections. F p is for the protein, Fpy
Feu is for the derivative, and Fy is for the

heavy atom contribution.




Isomorphous replacement method




Determination of heavy atom positions from centric
reflections (centro-symmetric projections)

Fpu =Fp +Fp
is simplified to

|Fpu| = |Fp| £ |FH|,
|Fy| = |Fpul| — | Fp|

or
|Fg| = |Fp| — | Fpul
and

|Fy|* = (| Fpul — | Fpl)*.




We have made the assumption that Fpy and Fp have the same sign, either both
positive or both negative. With this assumption, the Patterson summation with the
coefficients (| Fpy| — | Fp|)* will give a Patterson map of the heavy atom arrange-
ment in the unit cell. For the majority of the reflections, the assumption will be
true, because, in general, Fy will be small compared with Fp and Fpy. If, how-
ever, Fp 1s small, Fpy could have the opposite sign and Fy would be Fp + Fpy.
Fortunately, this does not occur often enough to distort the Patterson map

seriously.

1
Puvw) = - D IF(hkD cos2m(hu + kv + [w)]
hkl

1
Pluvw)= D (A|Fli) cos[2m(hu + kv + lw)]  Scalel
h
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Figure 7.1. (a) A two-dimensional unit cell with only two atoms. (b) The corresponding
Patterson cell.



Determination of heavy atom positions from

acentric reflections
A |F|iso - |FPH| - |FP|-

We will now see that the coordinates of the heavy atoms can generally be derived
from a Patterson map calculated with (A|F |;s)*. The triangle ABC in Figure 7.9
expresses the vector sum: Fpy = Fp 4+ Fy. However, for the time being, only the
lengths of Fpy (| Fpy|) and that of Fp(| Fp|) are known, but not their directions. For
Fu, both the length and direction are unknown.

In Figure 7.9, CE = | Fg| cos(apg — ag). In general, ap — opy is small, because
formostreflections, | F| < | Fp| and | Fpy|. Therefore, CE= A|F|;s and the result
is

A |Fliso = | Fu| cos(apy — an). (7.20)




The result is that a Patterson summation with (A| F|is,)? as the coefficients will in
fact be a Patterson summation with coefficients | Fy|* cos?(apy — ay). Because

1 1
cos*(oapy — Q) = 5 + 5 cos 2(opg — OH),

we obtain
) 1 ,» 1 2
| Fg|“ cos“(apy — o) = > | Fg|”~ + > | Fi1|“ cos 2(apy — o).

Because the angles apy and ay are not correlated, the second term on the right-
hand side will contribute only noise to the Patterson map. However, the first term,
1h| Fy|?, will give the Patterson function for the heavy atom structure on half of
the scale.

1
Pluvw) = = Y (A|Flio) cos[2m(hu + kv + [w)]
h



a b

Figure 7.1. (a) A two-dimensional unit cell with only two atoms. (b) The corresponding
Patterson cell.



Determination of protein phase angles

Figure 7.17. Harker construction for protein
phase determination. In the isomorphous re-
placement method, each heavy atom derivative
gives two possibilities for the protein phase an-
gle ap, corresponding to the two vectors Fp(1)

and F»(2). »
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The “lack of closure" error

|deal:

Real life:




Phase probability

Pj("l}




P(a)

P(a)
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J_l;[1 Pj(otprr)




Anomalous scattering

Figure 7.11. The atomic scattering
factor for a completely free electron f

(a) and for a bound electron (b). e ——————

The anomalous contribution consists
of two parts: a real part Af and an
imaginary part if . The direction of
the primary beam is pointing to the left;
it has a 180° phase difference with f.

f

anomalous




F.(+) without anomalous scattering

F..(+) with anomalous scattering

Ry
+ Fy(—) without anomalous scattering

Fu(—) with anomalous scattering



The anomalous Patterson map

The heavy atom contribution to the structure factor consists of a normal part, F,
and an anomalous part, Fy+. In Figure 7.13 this is drawn for a reflection (h k)
and for (h k). However, for convenience, the structure factors for (hk[) have
been reflected with respect to the horizontal axis. It can be derived that a Patterson
summation with the coefficients (A|F 2 can be approximated by a summa-
tion with the coefficients

This will give a Patterson map of the anomalous scatterers (the heavy atoms, see
belc

cfu g -F,

Figure 7.13. In this drawing, the structure factors F p(—), Fpu(—), Fy(—), and F},(—) have
been reflected with respect to the horizontal axis and combined with the structure factors
for the reflection (h k [). Note that aj; 1s the phase angle for the nonanomalous part of F ;.
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Solving the phase problem by:
Molecular replacement

1. source of initial phases is a model

2. the model is oriented and positioned to obtain the best agreement with
the x-ray data

3. phases are calculated from the model

4. The calculated phases are combined with the experimental data

Molecular Replacement was invented by
Michael Rossmann




Molecular Replacement

Known crystal structure New crystal structure

Given: * Crystal structure of a homologue
 New X-ray data

Determine: -« The new crystal structure



MR Technique

Known crystal structure New crystal structure

Method: » 6-dimensional global optimisation
— one 6-d search for each molecule in the AU
>> split further to orientation + translation searches = 3 + 37?

Required: e« Scoring
— the match between the data and (incomplete) model
— ideally: the highest score = the correct model



ROTATION FUNCTION

First, consider the model Patterson

We put the model in a large P1 box and calculate the Patterson
from the structure factors of the model in the P1 box.

model in large P1 box
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ROTATION FUNCTION

The Patterson of our unknown structure contains self-vectors and cross-vectors, but
because the cell was large, the self-vectors and cross vectors are well separated from
one another.
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ROTATION FUNCTION

Just as we generated the Patterson for our model in the first orientation, we can
generate the Patterson for the model in any orientation in any sized box.

. .
model in same large P1 box
in different orientation Patterson of o o
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ROTATION FUNCTION

When the models are in different orientations the Pattersons will not match one
another.
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ROTATION FUNCTION

However, when the second model is in the same orientation parts of the Pattersons
will match one another, and we can “solve” the rotation function for the model.
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ROTATION FUNCTION

If the model were in a different sized box, the Patterson of the intramolecular
vectors, which are located in a sphere centred on the origin, can be overlaid. We can
cut out the peaks corresponding to the inter-molecular vectors from each Patterson

and just compare the central parts of the Pattersons.




ROTATION FUNCTION

Now, the Pattersons of the intra-
molecular vectors will match when
the model is in the correct
orientation.



Translation function

PLa@) = [ 91030 X pa(x +ukdx
V

T(t) = f P 2(u, t) x P(u)du
v

> || F(obs)| — k| F(calc)||
hkl

> | F(obs)|

hkl

R =

(10.7)



Real space cat Fourier amplitudes
and phases
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Unknown structure,
unknown orientation
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Known structure
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amplitudes Phases
unknown!
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Observed amplitudes (tailed cat),
calculated pha es (Manx cat)

_ —

—)

Inverted
Fourier
transform

Even the tail becomes visible!



Model Bias

Duck Fourier transform
of duck
| L) &
-'s»
Fourier
transform
Duck amplitudes Looks like a cat!!
+ cat phases |:-)|
Inverted i
Fourier
transform




Model building & resolution

1.0A 2.5A

3.0A 4.0A



Phase improvement

When to use:

b =

. The structure is partially known.
. The protein molecules distinguish themselves as relatively high regions of elec-

tron density and their boundaries can be estimated. The electron density between
them 1s then set to a constant value or adjusted otherwise.

. Noncrystallographic symmetry within the asymmetric unit is present. As in

method 2, molecular boundaries must then be determined and the solvent region

modified. Moreover, the density of all molecules (or subunits of a molecule)
related by noncrystallographic symmetry is averaged.

. Correct protein electron density maps have a characteristic frequency distribu-

tion for the values of the electron density (histogram matching).



Refinement of the Model Structure
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Constrains X Restrains

e They are taken as rigid and only dihedral angles can be varied. In this case, the
geometry and the refinement are called constrained. This effectively reduces
the number of parameters to be refined. In the application of this method, it
is difficult to move small parts of the structure to a “best fit” position because
many angular motions are involved.

e [f, on the other hand, the stereochemical parameters are allowed to vary around a
standard value, controlled by an energy term, the refinement is called restrained.
The atomic coordinates are the variables and the restraints are on bond lengths,
bond angles, torsion angles, and van der Waals contacts. Restraints are “obser-
vations™ because a penalty is included for disagreement with a restraint. This
allows an easy movement of small parts of the structure, but it is difficult to
move large parts (e.g., an entire molecule or domain).



R-factor, R, factor

Film

Diffracted

x-rays
X-ray
T
L]

X-ray
tube Observed Calculated
reflections diffraction pattern
R-factor Rfee Tactor
Y 11 Fovs| — k| Fearc|| Y 1 Fobs| — k| Feacll
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Z|Fﬂh5| Z | Fobs|
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Ramachandran plot
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Geometry and stereochemistry

Bond lengths Dihedral angles
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Figure 15.1. Real-space R-factor (lower panel) and average B-factor (upper panel) of the
Azotobacter vinelandii lipoamide dehydrogenase. Misplaced loops are indicated by a thin
line, and after their correction, they are indicated by a thick line. Note the correspondence
between the R-factor and the B-factor at the problem sites. (Courtesy of Dr. Andrea Mattevi.)
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Quality of diffraction data

R-Factor for Comparing the Intensity
of Symmetry-Related Reflections

Z Z \L:(hkD) — T(hEkD)|

hkl i

ZZL{}:M)

hkl @

Rsym“) —

for n independent reflections and i observations of a given reflection. I(h k [)is the
average intensity of the i observations.



