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Bacterial replisomes are dynamic multiprotein DNA replication

machines that are inherently difficult for structural studies.

However, breakthroughs continue to come. The structures of

Escherichia coli DNA polymerase III (core)–clamp–DNA

subcomplexes solved by single-particle cryo-electron

microscopy in both polymerization and proofreading modes

and the discovery of the stochastic nature of the bacterial

replisomes represent notable progress. The structures reveal

an intricate interaction network in the polymerase–clamp

subassembly, providing insights on how replisomes may work.

Meantime, ensemble and single-molecule functional assays

and fluorescence microscopy show that the bacterial

replisomes can work in a decoupled and uncoordinated way,

with polymerases quickly exchanging and both leading-strand

and lagging-strand polymerases and the helicase working

independently, contradictory to the elegant textbook view of a

highly coordinated machine.
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Introduction
Genetic information of living organisms is stored in

chromosomal DNA. To faithfully pass it on to the next

generation, it is essential that DNA be copied with high

efficiency and fidelity. All organisms from bacteria to

humans use complex multi-protein molecular

machines, called the replisomes, to achieve this feat.

Although general functions and mechanisms of repli-

somes from different domains of life are similar, the

components and mechanistic details can be distinct.

Here, we focus on bacterial replisomes, particularly that

from Escherichia coli.

Bacterial DNA replication can be divided into three

stages: initiation, elongation and termination. Each stage
www.sciencedirect.com 
requires a different set of proteins with highly coordi-

nated activities [1]. The details of each stage as well as

recent insights into the structures and functions of

protein components or subcomplexes are discussed

separately.

Initiation of DNA replication
Initiation of bacterial DNA replication is tightly con-

trolled to ensure that the chromosome is duplicated

once every cell division. Bacterial chromosomes are

usually circular doubled-stranded (ds) DNA molecules

with a single initiation locus called the replication ori-

gin, oriC. The E. coli chromosome is 4.6 Mb in size with

a 250-bp oriC. Although there are significant variations

in the length and organization of origins in different

bacterial species, they are generally comprised of an

array of ‘DnaA boxes’ for origin recognition by the

initiator protein DnaA, together with an adjacent AT-

rich DNA unwinding element (DUE) for strand sepa-

ration [2] (Figure 1a). Recently, a string of repeating

trinucleotides (5’-TAG/A) in the DNA unwinding

region, termed DnaA-trio, was identified as an impor-

tant element [3�].

DnaA has four domains (Figure 1b). The protein interac-

tion domain 1 interacts with protein partners, including

the replicative helicase DnaB, and domain 2 is a flexible

linker. Domain 3 is the AAA+ ATPase domain, which

mediates DnaA oligomerization and binding to single-

stranded (ss) DNA [4]. Domain 4 is the dsDNA-recogni-

tion domain that binds to DnaA boxes via a helix-turn-

helix motif [5] (Figure 1c). Both ATP-bound and ADP-

bound DnaA can bind to high-affinity DnaA boxes, but

only ATP-DnaA binds to lower affinity boxes and oligo-

merizes to form a helical filament on oriC [6,7] (Figure 1a,

c). DNA wrapping around the DnaA filament causes

torsional strain in the DUE, contributing to DNA melting

[8,9]. The DnaA filament then extends beyond the DnaA

boxes with the AAA+ domain interacting with DnaA-trio.

This sequesters and stretches one strand of the DUE,

facilitating DNA melting and bubble formation for heli-

case loading [4] (Figure 1c).

After forming a DNA bubble, two DnaB helicase hex-

amers are recruited and loaded onto each of the separated

ssDNA strands as DnaB6–(DnaC)6 complexes. Binding of

the helicase loader DnaC inhibits the ATPase and heli-

case activities of DnaB and traps it like an open right-

handed lockwasher, ready to be loaded onto ssDNA

[10,11]. DnaC is a homolog of DnaA. Its AAA+ domain

interacts with the AAA+ domain of DnaA at the end of the

filament and serves as an adaptor to load one DnaB–DnaC
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Schematic representation of the initiation of bacterial DNA replication.

(a) E. coli oriC, showing DnaA boxes and the AT-rich DNA unwinding

element (DUE). The DnaA boxes contain 9 base pairs with consensus

sequence 5’-TTATNCACA (6). The high-affinity DnaA boxes are

colored in dark blue and lower affinity boxes in light blue. (b) Domain

organization of E. coli DnaA replication initiator protein. (c) DNA

melting at oriC and loading of the DnaB6–(DnaC)6 helicase–loader

complex onto the DNA bubble. Lower schematic: ATP-bound DnaA

binds to DnaA-boxes via Domain IV, thereby promoting dsDNA to

wrap around the DnaA filament, causing torsional strain to the dsDNA

[8,9]. Meantime, Domain III of DnaA binds to one of the two ssDNA

strands of DUE and stretches the strand. These interactions cause the

AT-rich DUE to melt, forming a bubble [4]. At the same time, binding

of DnaC traps DnaB like an open lockwasher, to enable its loading

onto ssDNA [10]. DnaC interacts with DnaA at the end of the filament

and serves as an adaptor to load one DnaB–DnaC complex [12]. It is

not known if closing of DnaB around ssDNA to form a hexameric ring

occurs before or concomitantly with dissociation of DnaC. Domain I of

DnaA interacts with the N-terminal domain of DnaB, helping to load

another DnaB–DnaC on the complementary strand [2]. Upper insets:

The helical filament of DnaA formed by Domains III (light orange) and

IV (pale green) of Aquifex aeolicus DnaA (PDB: 3R8F [4]) and Domain

IV of E. coli DnaA (pale green) bound to dsDNA (PDB: 1J1V [5]). The

ssDNA binds in the middle of the DnaA filament via interactions with

the AAA+ Domain III of DnaA.
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complex onto the strand that DnaA is stretching [12].

Domain I of DnaA interacts with DnaB of the other

DnaB–DnaC complex, helping to load it on the comple-

mentary strand [2] (Figure 1c).

In Gram-positive bacteria, such as Bacillus subtilis, the

hexameric replicative helicase DnaC (counterpart of

DnaB) is believed to be assembled from individual sub-

units with the assistance of the helicase loader DnaI and

two others proteins, DnaD and DnaB [6]. In Helicobacter
pylori, a bacterium with no identified helicase loader,

DnaB assembles as a head-to-head double hexamer,

which later separates into two hexameric helicases [13].

Next, the DnaG primase interacts with the N-terminal

collar of DnaB6, stimulating DnaC dissociation [14]. The

two DnaB hexamers later move to the apices of the

bubble to form two replication forks moving in opposite

directions. DnaG recognizes specific priming sites (pref-

erentially 5’-CTG) to produce a leading-strand RNA

primer for DNA elongation, and to repeatedly prime

Okazaki-fragment (OF) synthesis on the lagging strand.

Elongation stage of DNA replication
DNA contains two antiparallel strands that have been

thought to be replicated simultaneously by the same

replisome. The leading strand is replicated continuously,

while the lagging strand is synthesized as short Okazaki

fragments. RNA primers of OFs are replaced by DNA by

gap filling and nick translation by DNA polymerase I, and

the nicks are sealed by DNA ligase.

In E. coli, the major replicative polymerase is the Pol III

holoenzyme (HE) comprised of 10 different proteins

organized into three functionally distinct but physically

interconnected assemblies: the aeu polymerase core, the

b2 sliding clamp and the dtng3–nd’cx clamp loader com-

plex [1] (Figure 2a). In the polymerase core, a is the

polymerase subunit, e the 3’–5’ proofreading exonuclease

and u is a small subunit that stabilizes e. After a RNA

primer is made by DnaG, the b2 clamp is loaded onto the

primer terminus by the clamp loader. The a and e
subunits separately bind the clamp, each via a short linear

clamp-binding motif (CBM) to the two symmetrically

related CBM-binding pockets of b2. Tethered to the

clamp, Pol III is able to synthesize DNA at high speed

(�1000 Nt/s) and with much higher processivity

(>150 kb) [1,15].

Bacterial replisomes are highly flexible and mobile

machines, their dynamics being mediated and controlled

by a network of protein–protein interactions of different

strengths. Many of the replication proteins are either

conformationally flexible or contain flexible or unstruc-

tured regions, making structural studies by X-ray crystal-

lography or NMR difficult. However, through decades of

efforts, structures of all E. coli replication proteins or their
www.sciencedirect.com
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Schematic representation of the E. coli replisome adapted from Lewis et al. [1]. (a) Textbook model of the E. coli replisome with coupled and

highly coordinated leading-strand and lagging-strand synthesis. Pol III* is connected to DnaB via the t subunit of the clamp-loader complex and

two or three polymerase cores of the same Pol III* replicate both leading-strand and lagging-strand DNA. The ssDNA in the lagging-strand loop is

bound by ssDNA-binding protein, SSB. (b) Recent studies have shown that E. coli Pol III* is readily exchangeable at the fork [33��,34��,35��] and

that leading-strand and lagging-strand synthesis may not be tightly coupled, or may even be accomplished by different Pol III HEs. The DnaB

helicase can also be decoupled from polymerases and translocate ahead at the apex of the fork [36�].
bacterial homologs have been solved as complexes, whole

proteins or domains [1]. Recent breakthroughs in single-

particle cryo-electron microscopy (cryo-EM) have seen

structures determined of large replisome subassemblies,

even the whole bacteriophage T7 replisome, though so

far only at modest resolution [16��,17��,18�].

Cryo-EM structures of the E. coli Pol III core–clamp–tC
(C-terminal domain of the t subunit of the clamp-loader)

complexes on primer–template DNA in both polymeri-

zation and proofreading modes were recently solved at

8 and 6.7 Å, respectively, along with structures of a DNA-

free complex [16��,17��] (Figure 3). These structures

resemble previously proposed structural models

[15,19,20], with some surprises. For example, in the

DNA-bound polymerization complex, the b2 clamp

becomes almost perpendicular to the DNA strands

(Figure 3a,b), in contrast to its tilted configuration in

the crystal structure of DNA-bound b2 [21]. While the

Pol III a polymerase subunit binds to DNA in a confor-

mation similar to the crystal structure of DNA-bound

Thermus aquaticus (Taq) a, the locations of C-terminal

domains (aCTD, comprising the OB and the t-binding,
TBD, domains) are different [22,23]. In the Taq a struc-

ture and the DNA-free complex, the aCTD is close to the

polymerase active site with the OB domain positioned to

bind and deliver the ssDNA template into the active site
www.sciencedirect.com 
(Figure 3c,d). In the DNA-bound cryo-EM structures,

these domains are shifted toward the little finger domain

of a, the domain that directly contacts the b2 clamp; they

are therefore far away from the template strand entering

the active site (Figure 3e). The OB domain contacts both

the little finger and thumb domains of a as well as the b2

clamp and e. The face of the OB domain that had been

thought to be involved in ssDNA template binding

[24,25] now directly faces and is relatively close to the

dsDNA. Additionally, e wedges between the a thumb

domain and the clamp. This previously unappreciated

interaction network apparently stabilizes the whole

complex.

The proofreading complex is fairly similar to the poly-

merization complex, with small movements of individual

protein components [17��] (Figure 3a,b). The most sig-

nificant movements include a rotation and a tilt of duplex

DNA against the plane of b2, locking the DNA against

the inner surface of the b2 ring (Figure 3b). The poly-

merase thumb domain and e also move towards the DNA.

The thumb domain wedges between two DNA strands

with unmatched base pairs, resulting in a highly distorted

and frayed DNA substrate. The newly synthesized strand

is therefore able to reach the nuclease active site of e for

editing. Considering that the proofreading complex is

fairly similar to the polymerization complexes and duplex
Current Opinion in Structural Biology 2018, 53:159–168
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Figure 3
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Structures of the E. coli polymerase–clamp-tC–DNA complexes. (a) Surface representations of the polymerization (left) and proofreading (right)

complexes [16��,17��]. The N-terminal domains of a (aNTD, residues 1–963, are colored in deep salmon), and the OB (964–1072) and t-binding

domains (TBD, 1173–1160) of aCTD in brown and dark salmon, respectively, e in yellow, b2 in aquamarine, u in orange and tC in slate. The

polymerization complex does not include u, and tC and the aCTD are missing from the proofreading complex. (b) Cartoon representations of

Current Opinion in Structural Biology 2018, 53:159–168 www.sciencedirect.com
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DNA with two unmatched base-pairs tends to fray, it is

proposed that e works passively by waiting for DNA to

reach its nuclease active center when a wrong nucleotide

is incorporated rather than responding actively to the

misincorporation event [17��]. In a complementary sin-

gle-molecule biophysical study [26], the clamp-bound Pol

III core has been shown to be remarkably stable and

processive in the proofreading mode in the absence of

incoming dNTPs.

A low-resolution (13.8 Å) cryo-EM structure of the whole

bacteriophage T7 replisome, a simpler system function-

ally similar to the bacterial replisomes, has been reported

[18�]. In the structure, leading-strand and lagging-strand

gp5 polymerases are placed in asymmetric positions and

their conformations and interactions with the gp4

helicase–primase protein are also significantly different.

The leading-strand polymerase is in a closed conforma-

tion, interacting with both helicase and primase domains

of gp4 through its finger and exonuclease domains. On the

other hand, the lagging-strand polymerase is in an open

conformation and interacts exclusively with two other

primase domains of adjacent gp4 subunits using a similar

region of the exonuclease domain. The two polymerases

also interact with each other through the palm domain of

the leading-strand polymerase and the finger domain of

the lagging-strand polymerase. The structure provides

insights into how the two polymerases are organized

within the T7 replisome, which may in future be

extended to the host bacterial replisomes.

Coordination of leading-strand and
lagging-strand synthesis
While structures of bacterial replisomes and their subas-

semblies continue to be elucidated, shedding light on their

flexibility and dynamics, views of how they work are also

undergoing paradigm-shifting changes. It was already

known that the bacteriophage T7 replisome, which is far

simpler to that from E. coli, is highly dynamic, with the

replicating polymerases quickly exchanging with external

polymerasesat forks.Perhaps a new polymerase can be used

for every OF and more than one polymerase can simulta-

neously synthesize different OFs [27]. Polymerases may

also be left behind to synthesize OFs behind the forks [28�].

Nevertheless, the bacterial replisomes have long been

believed to be highly coordinated, highly processive
(Figure 3 Legend Continued) complexes showing the differences in the pr

B-form structure, while in the proofreading complex, the primer DNA is fray

e. The proofreading complex is rotated slightly to show DNA in the active c

representation of aNTD from the DNA-bound polymerization complex ([16��

(d) Positioning of the aCTD in the DNA-free complexes (PDB: 5FKU). (e) Po

5FKV) [16��]. While the OB domain in the DNA-free complex is close to the 

OB domain is colored in marine and the TBD in magenta. The aNTD (gray) 

aCTD.
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machines capable of copying the whole chromosome

without dissociation. Two or three polymerase cores of

the same E. coli Pol III HE were believed to synthesize

both DNA strands, with the lagging strand polymerase

repeatedly being recycled for new OF synthesis. Lag-

ging-strand polymerase recycling has been debated to be

triggered by various collision or signaling mechanisms in a

well-controlled manner [1,29–31]. However, this elegant

textbook view has now been challenged [32]. Recent

studies find that bacterial polymerases also readily

exchange at replication forks and leading-strand and

lagging-strand DNA synthesis may not be tightly

coupled.

First, Yuan et al. [33��] showed that the E. coli Pol III a
D403E mutant, which can bind to primed DNA but not

extend it, can exchange with replicating polymerases.

The exchange happens only when the mutant polymer-

ase is attached to a clamp loader containing at least one t
subunit. Core polymerase itself is unable to exchange.

Soon polymerase exchange was reported inside E. coli
cells and in single-molecule in vitro assays. Using fluo-

rescence microscopy to track replisome components

inside cells, Beattie et al. [34��] were able to show that

several components of Pol III* (Pol III holoenzyme

lacking b2), including a, e, t, d and x, all resided at

the forks for about 10 s, only long enough for synthesis of

a few OFs. Meanwhile, b2 stayed for 47 s and the DnaB

helicase for 15 min. The very similar exchange times of

a, e, t, d and x suggest that it is Pol III* itself rather than

individual polymerase components that quickly

exchange, while the DnaB helicase in contrast serves

as a stable platform for reassembly of replisomes. Using

in vitro single-molecule assays, Lewis et al. [35��] dem-

onstrated that Pol III* exchanges in a concentration-

dependent manner; Pol III* is a stable complex that

exchanges as a single entity when it is present in excess

in solution, but remains bound and highly processive

when no spare Pol III* is available. These studies

suggest that E. coli DNA replication is not as processive

as it had been thought, and leading-strand and lagging-

strand synthesis is not necessary tightly coupled, con-

sidering there is excess of Pol III* in cells. A more recent

in vitro single-molecule study showed that leading-

strand and lagging-strand DNA synthesis by the E. coli
replisome can indeed be carried out in a decoupled and

stochastic way, in which both polymerases and helicase

work independently [36�].
imer–template DNA. In the polymerization complex (left), the DNA has

ed with the end of the newly synthesized strand in the active center of

enter of e and the u subunit is omitted for clarity. (c) Surface

], PDB: 5FKV), showing the thumb, palm, fingers, and PHP domains.

sitioning of the aCTD in the DNA-bound polymerization complex (PDB:

active site of Pol III a, it is far away in the DNA-bound complex. The

in the two complexes shows relatively minor changes compared to

Current Opinion in Structural Biology 2018, 53:159–168
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Considering the exchange of active polymerases at rep-

lication forks, perhaps new Pol III* can be utilized to

synthesize new OFs at, or even behind, the replication

fork, as happens with the T7 replisome [27,28�]
(Figure 2b). Excess Pol III* can wait or scan for a

new primer and start to synthesize an OF once a new

primer is available. This may render unnecessary the

various mechanisms proposed to signal polymerase recy-

cling during or at conclusion of OF synthesis. Simulta-

neous synthesis of more than one OF using different Pol

III*s is also possible, so the lagging-strand polymerase

does not need to synthesize faster than that making the

leading strand.

It is instructive briefly to explore how we came to

believe in the textbook view of fully coordinated repli-

cation by the E. coli replisome. After many years of bulk

(ensemble) replication assays that defined the impor-

tance and roles of the many protein components, it was

realized that (initiation) complexes could be assembled

on primer–template DNA that could progress, for

example on addition of nucleotides, to fast and proces-

sive DNA elongation, implying retention of the com-

ponents of the (initiation) complex within replisomes.

Omission of some faster-exchanging components in the

elongation stage, like b2 and DnaG primase, reduced

processivity, so these components were routinely added

in that stage. The b2 clamp was subsequently shown

also to be capable of recycling from one lagging-strand

primer terminus to the next, but to a limited extent,

likely governed by whether the clamp-loader complex

had already bound a new b2 clamp from solution [37].

More recent studies, now using single-molecule

approaches that reveal alternate pathways for the first

time, show that other replisomal components like Pol

III* can also exchange when present in excess in

solution. Pol III* exchange involves a multipoint com-

petitive interaction mechanism that relies on the hier-

archy of strong and weak protein–protein and protein–

nucleic acid interactions in the replisome [27,35��,38],
and similar mechanisms have now been uncovered in

other multiprotein complexes [39–45] and have been

mathematically modeled [46–49]. These observations

are consistent with the basic principles of chemistry,

where multiple pathways can exist in parallel, governed

by thermodynamics and kinetics [32]. This redundancy

of potential pathways presumably enables timely com-

pletion of chromosome duplication in the face of impe-

diments and makes the replisome more resilient to

mistakes.

Termination of DNA replication
Proper termination of DNA replication is important for

genome stability. E. coli replication terminates in the

region opposite oriC. There are ten 23-bp termination

(Ter) sites in the region with some sequence variations

that determine their binding affinities for the monomeric
Current Opinion in Structural Biology 2018, 53:159–168 
termination protein Tus [50] (Figure 4a). Tus binds to Ter
with high affinity in 1:1 ratio, and Tus–Ter can further

form a very stable ‘lock’ complex if cytosine-6 of the

strictly conserved G–C(6) base pair of Ter is flipped out of

the DNA duplex and bound in a preformed cytosine-

binding pocket of Tus [51] (Figure 4b). The Tus–Ter lock

complex is polar with a permissive face that allows the

replisome to pass unhindered and a non-permissive face

that can block the replisome. The ten Ter sites are

organized as two oppositely orientated groups of five,

allowing the replisome to pass the first group and be

blocked at the second. This ensures that the two replica-

tion forks converge in the terminus region for proper

chromosome segregation. However, the blockage effi-

ciency at any single Ter site never exceeds 50% in vivo
[52], a phenomenon that was recently explained. An in
vitro single-molecule study shows that the proportion of

replisomes passing or stalled at a Tus–Ter barrier is

determined by the speed of the advancing replisome

[53��]. Comparison of crystal structures of Tus in complex

with different Ter variants revealed that the a6/L3/a7
region of Tus undergoes the most significant conforma-

tional changes, with residue Arg198 interacting exten-

sively, but differently, with the lagging-strand template

before and after lock formation (Figure 4c). It is suggested

that competition between the rates of Tus displacement

and rearrangement of the Arg198 interaction is critical for

lock formation. At high speed, Tus–Ter interactions can-

not rearrange quickly enough, resulting in Tus dissocia-

tion. At lower speeds, the Tus–Ter interactions are able to

rearrange and the lock forms, permanently blocking the

replisome.

Another question concerning Tus–Ter is whether spe-

cific interactions of Tus with the DnaB helicase are

required for replisome blockage. Using magnetic twee-

zers, Berghuis et al. [54�] neatly demonstrated that force-

induced, rather than DnaB-induced, separation of

duplex DNA is sufficient for Tus–Ter lock formation,

ruling out the obligate requirement of specific Tus–

DnaB interaction for replication fork blockage. The

results are consistent with the model that strand sepa-

ration itself leads to lock formation. This study also

identifies three Tus–Ter states with different lock dwell

times, with the longest-lived state corresponding to the

lock and two shorter-lived states likely the intermedi-

ates before lock formation [54�,55]. Another study using

the T7 replisome showed that the replisome was

blocked at the non-permissive face, but T7 polymerase

alone proceeds to remove Tus unless the C(6) lock is

pre-formed. In contrast, the isolated T7 polymerase

approaching from the permissive face is arrested while

the replisome and helicase can pass. This suggests that

the Tus–Ter complex is also sensitive to the transloca-

tion polarity of molecular motors, and further argues

against the significance of a specific interaction of Tus

with DnaB [56�].
www.sciencedirect.com
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Figure 4
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Mechanisms of replisome blockage by Tus–Ter replication termination complexes. (a) Schematic representation of the E. coli chromosome,

showing positions of oriC and Ter sites. The clockwise moving fork passes through the permissive sites shown in green and is arrested at the

non-permissive sites shown in red. (b) Schematic representation of structure of the ‘locked’ Tus-Ter complex (PDB: 2I06), showing cytosine-6 in

its binding pocket in Tus. (c) Interactions of residue Arg198 of Tus with both strands of Ter in complexes with double-stranded wild-type Ter

(PDB: 2I05, left) and the Tus–Ter UGLC complex (GC(6) base pair inverted; PDB: 4XR3, right) [53��].
Conclusions
Bacterial DNA replication and the replisomes that medi-

ate it have been studied extensively for decades. Never-

theless, our understanding continues to develop, and the

replisomes are still among the best experimental systems

to probe the ‘design principles’ that determine function of

highly dynamic multiprotein machines. Current insights

are primarily driven by use of single-particle cryo-EM to

probe structures and single-molecule biophysics to probe

dynamics. Recent progress includes the cryo-EM struc-

tures of E. coli polymerase–clamp subassemblies in both

polymerization and proofreading modes and the whole

phage T7 replisome, coupled with changing views of

function driven by single-molecule biochemical studies

of the extent of coordination of leading-strand and lag-

ging-strand DNA synthesis by prokaryotic replisomes.
www.sciencedirect.com 
Biophysical studies reveal an intricate interaction net-

work in the polymerase core–clamp–clamp loader assem-

blies, providing functional and structural insights into

replisomes. Meantime, ensemble and single-molecule

functional assays and fluorescence microscopy show that

the bacterial replisomes can work in a decoupled and

uncoordinated way, with polymerases able to quickly

exchange. Both leading and lagging-polymerases and

the replicative helicase appear to be able to work inde-

pendently, which is contradictory to the textbook view of

a highly coordinated machine.
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This study shows that the T7 replisome is blocked at the non-permis-
sive face of the Tus–Ter complex. Surprisingly, isolated T7 polymerase
Current Opinion in Structural Biology 2018, 53:159–168 
can bypass the Tus–Ter barrier from the non-permissive end unless C
(6) is unpaired beforehand. In contrast, isolated T7 polymerase
approaching from the permissive face is arrested. This suggests that
the Tus–Ter complex is sensitive to the translocation polarity of
molecular motors.
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