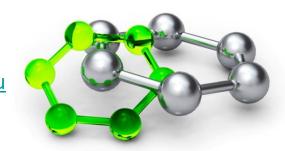
CG920 Genomics

Lesson 6

Gene Expression and Chemical Genetics

Jan Hejátko

Functional Genomics and Proteomics of Plants,


CEITEC - Central European Institute of Technology
And

National Centre for Bimolecular Research,

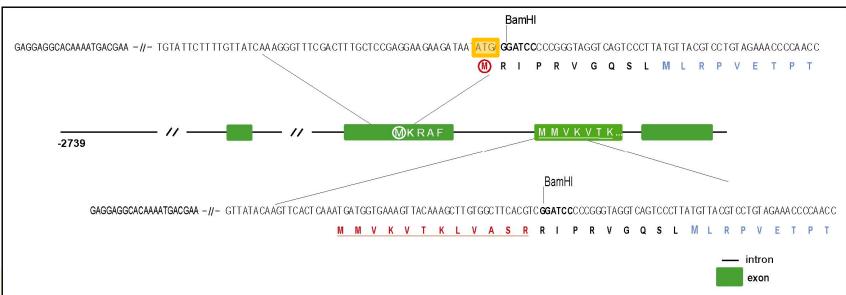
Faculty of Science,

Masaryk University, Brno hejatko@sci.muni.cz, www.ceitec.eu

Literature

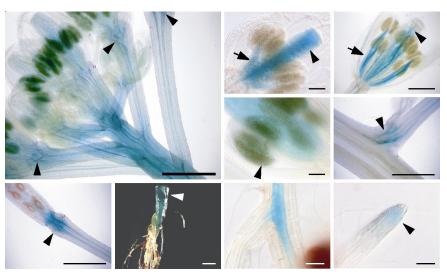
- Literature sources for Chapter 05:
 - Surpin, M. and Raikhel, N. (2004) Traffic jams affect plant development and signal transduction. Nature Reviews/Molecular Cell Biology 5,100-109
 - Zouhar, J., Hicks, G.R. and Raikhel, N.V. (2004) Sorting inhibitors (Sortins): Chemical compounds to study vacuolar sorting in Arabidopsis. Proceedings of the National Academy of Sciences of the U.S.A., 101, 9497–9501
 - Nevo-Dinur, K., Nussbaum-Shochat, A., Ben-Yehuda, S., and Amster-Choder,
 O. (2011). Translation-independent localization of mRNA in E. coli. Science 331, 1081-1084.
 - Lecuyer, E., Yoshida, H., Parthasarathy, N., Alm, C., Babak, T., Cerovina, T., Hughes, T.R., Tomancak, P., and Krause, H.M. (2007). Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131, 174-187.
 - Schonberger, J., Hammes, U.Z., and Dresselhaus, T. (2012). In vivo visualization of RNA in plants cells using the lambdaN(22) system and a GATEWAY-compatible vector series for candidate RNAs. The Plant journal: for cell and molecular biology 71, 173-181.

- Methods of gene expression analysis
 - Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene
 - Use of the data available in public databases
 - Tissue- and cell-specific gene expression analysis
 - Quantitative analysis of gene expression
 - DNA and protein chips
 - Next generation transcriptional profiling
- Regulation of gene expression in the identification of gene function by gain-of-function approaches
 - T-DNA activation mutagenesis
 - Ectopic expression and regulated gene expression systems
- Chemical Genetics


- Methods of gene expression analysis
 - Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene

Transcriptional Fusion

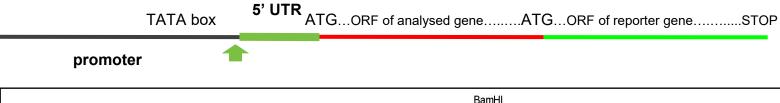
- Identification and cloning of the promoter region of the gene
- Preparation of recombinant DNA carrying the promoter and the reporter gene (uidA, GFP)

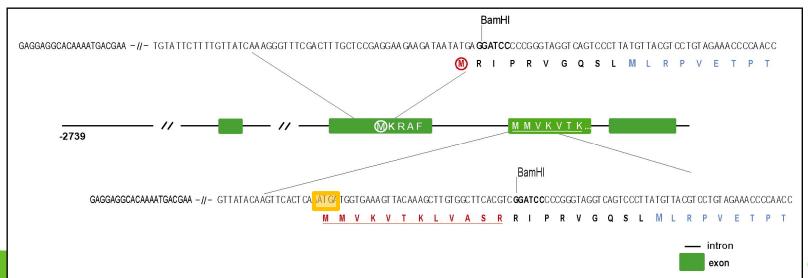


Transcriptional Fusion


- Identification and cloning of the promoter region of the gene
- Preparation of recombinant DNA carrying the promoter and the reporter gene (uidA, GFP)
- Preparation of transgenic organisms carrying this recombinant DNA and their histological analysis

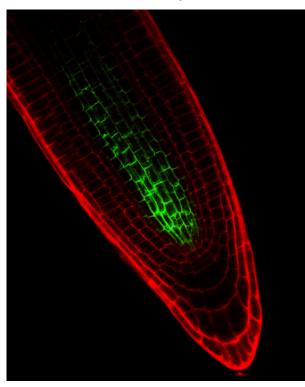
GUS Reporter in Mouse Embryos


- Methods of gene expression analysis
 - Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene



Translational Fusion

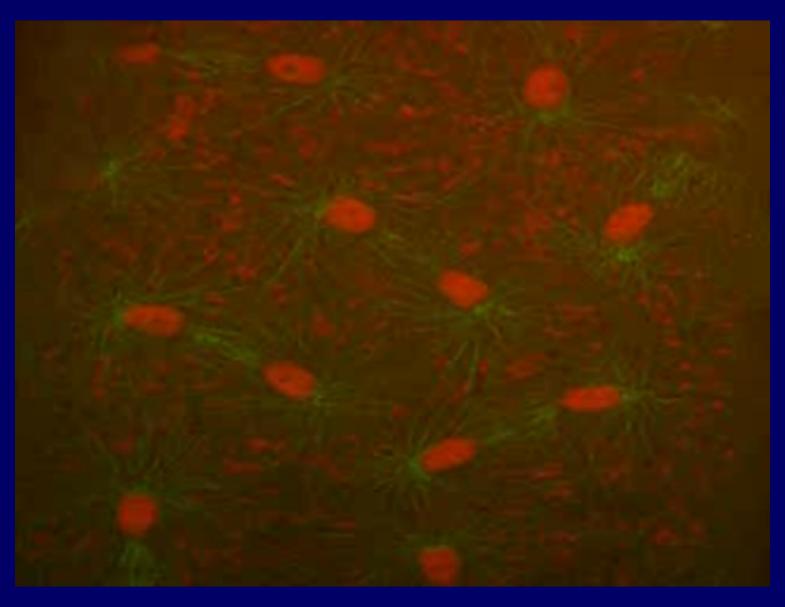
- Identification and cloning of the promoter and coding region of the analyzed gene
- Preparation of a recombinant DNA carrying the promoter and the coding sequence of the studied gene in a fusion with the reporter gene (uidA, GFP)


CEITEC



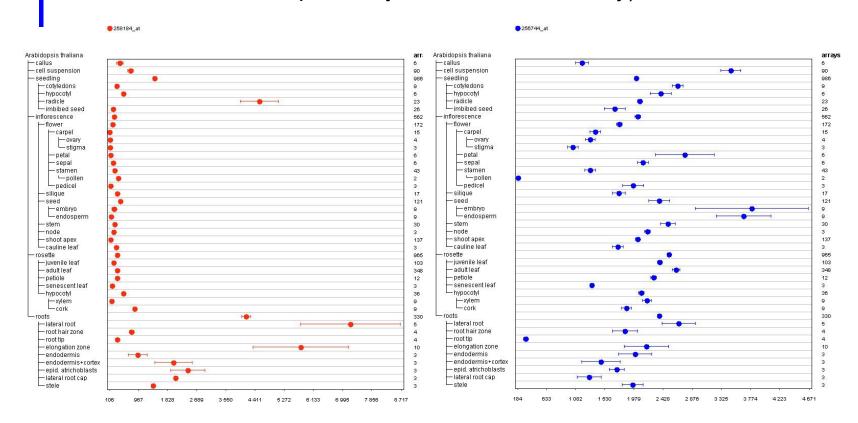
Translational Fusion

- Preparation of transgenic organisms carrying the recombinant DNA and their histological analysis
- Compared to transcriptional fusion, translation fusion allows analysis of intercellular localization of gene product (protein) or its dynamics

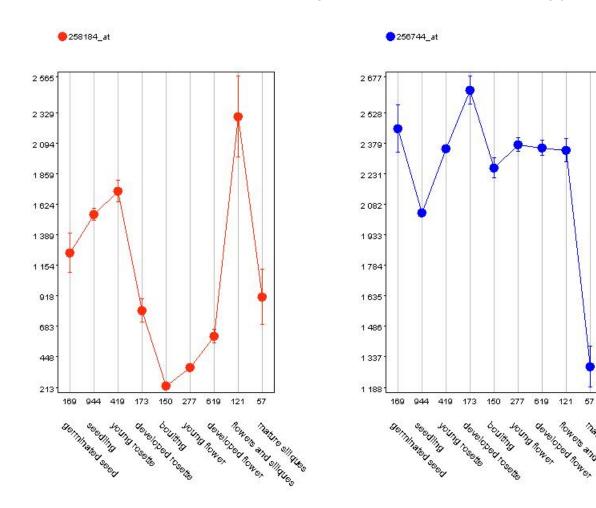

PIN1-GFP in *Arabidopsis*

Histone 2A-GFP in *Drosophila* embryo by PAM

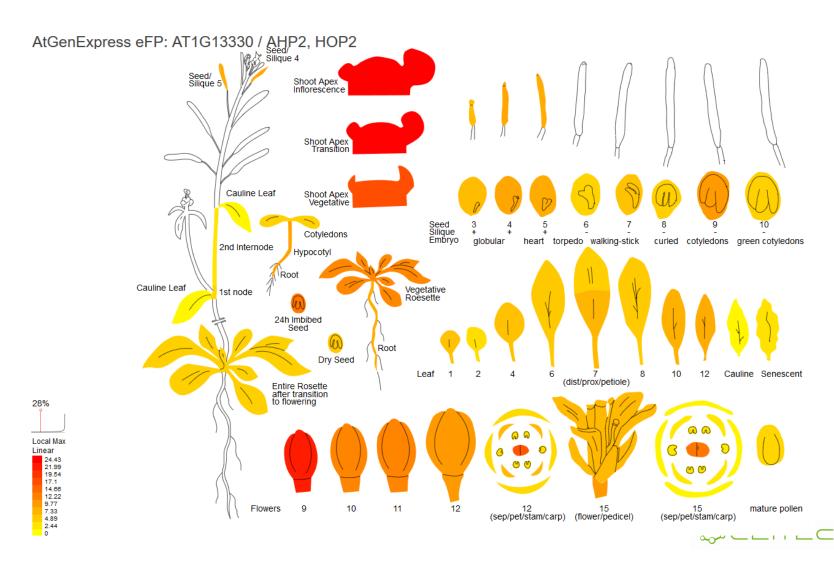
10


Translational Fusion

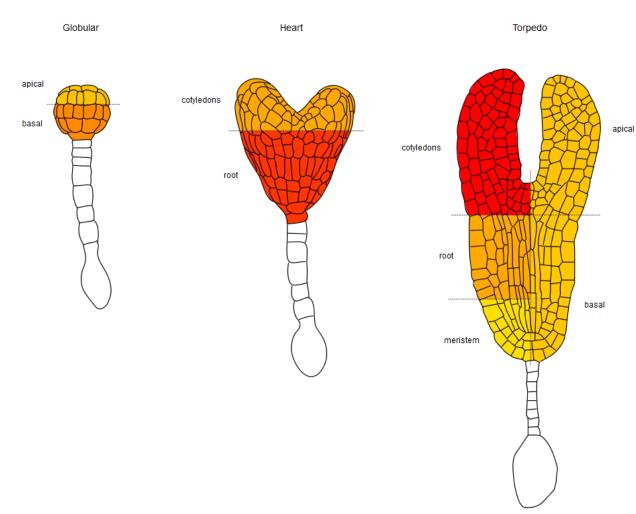
- Methods of gene expression analysis
 - Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene
 - Use of the data available in public databases



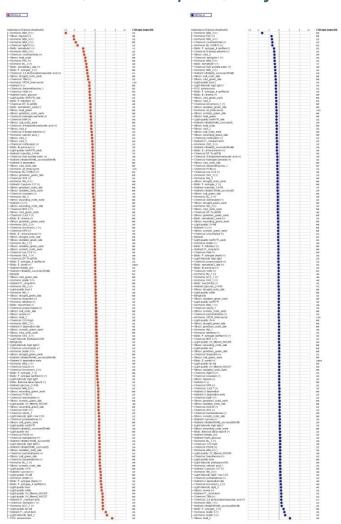
Analysis of expression using Genevestigator (AHP1 and AHP2, Arabidopsis, Affymetrix ATH 22K Array)



Analysis of expression using Genevestigator (AHP1 and AHP2, Arabidopsis, Affymetrix ATH 22K Array)

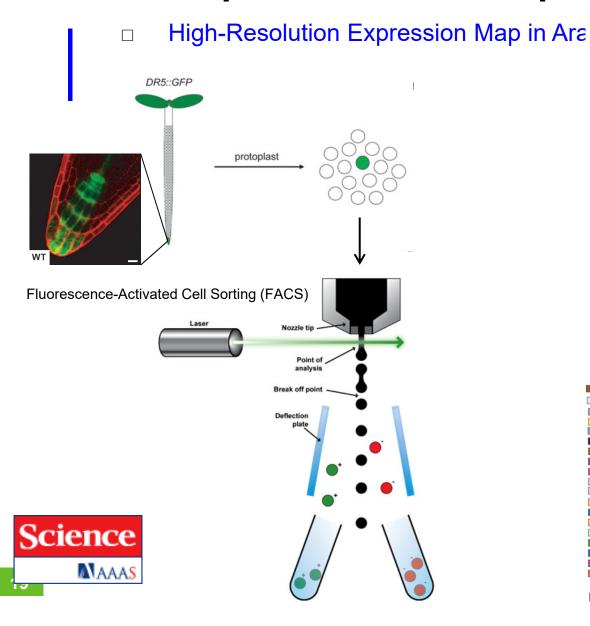


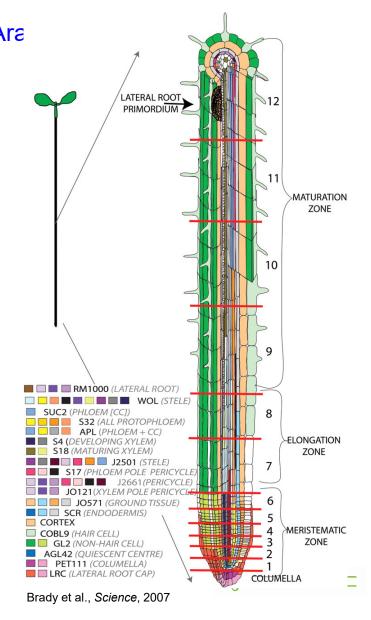
Analysis of expression using ePlant



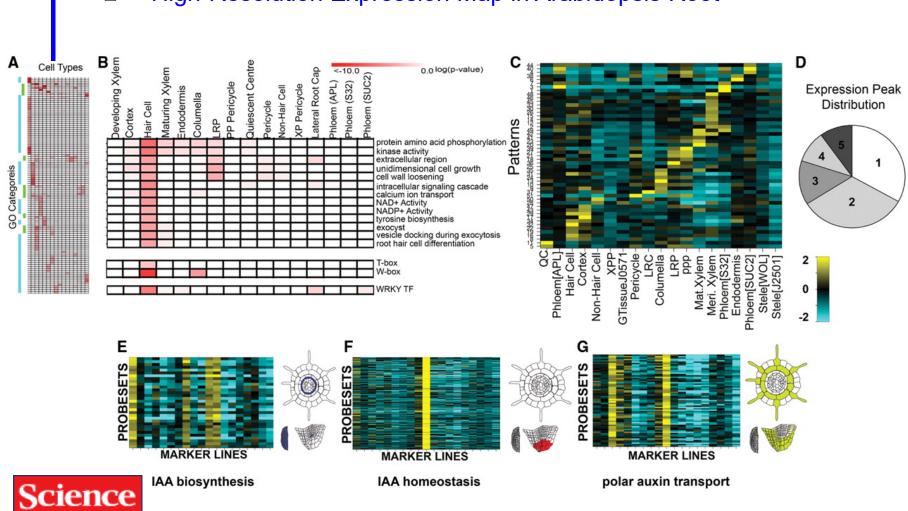
Analysis of expression using ePlant

Analysis of expression using Genevestigator (AHP1 and AHP2, Arabidopsis, Affymetrix ATH 22K Array)

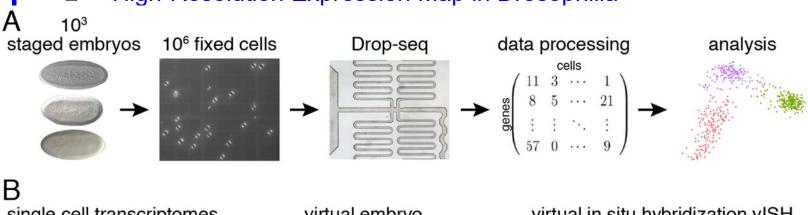


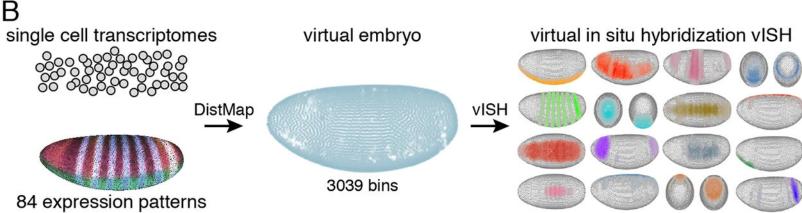


- Methods of gene expression analysis
 - Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene
 - Use of the data available in public databases
 - Tissue- and cell-specific gene expression analysis


Expression Maps - RNA

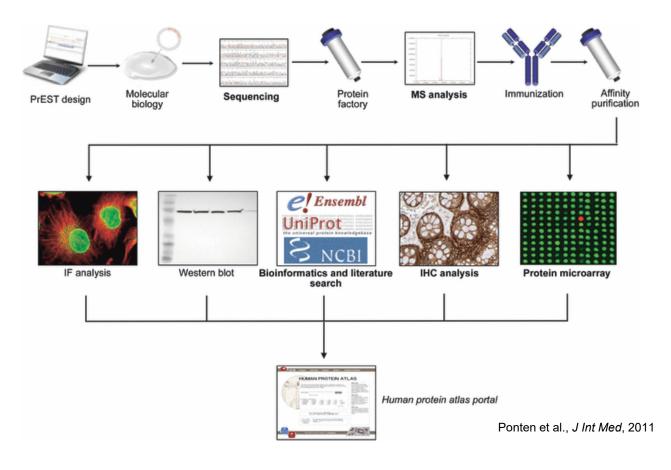
Expression Maps - RNA


High-Resolution Expression Map in Arabidopsis Root



MAAAS

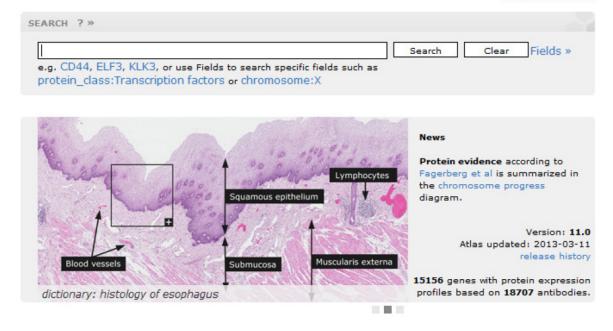
Expression Maps - RNA



Nikos Karaiskos et al. Science 2017; science.aan 3235

Expression Maps - Proteins

Human Protein Atlas



Expression Maps - Proteins

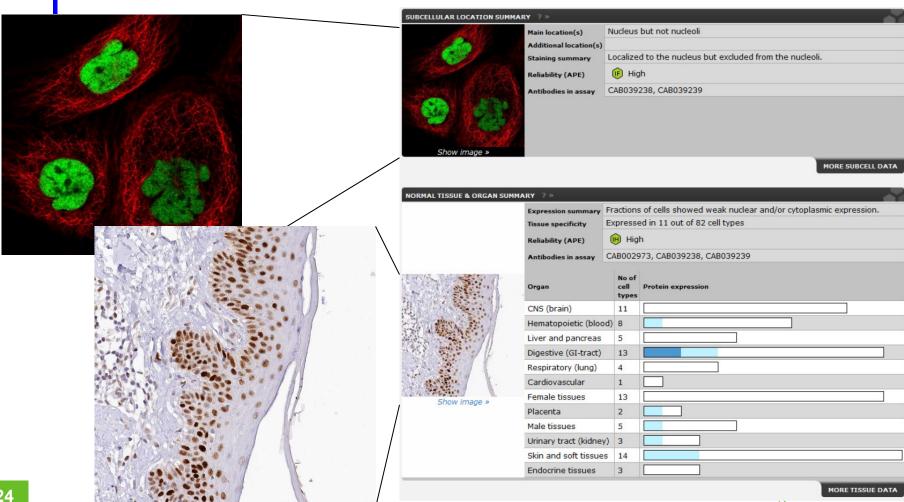
Human Protein Atlas (http://www.proteinatlas.org/)

THE HUMAN PROTEIN ATLAS

ABOUT & HELP

Knut och Alice Wallen bergs Stiftelse

The Human Protein Atlas project is funded by the Knut & Alice Wallenberg foundation.



Expression Maps - Proteins

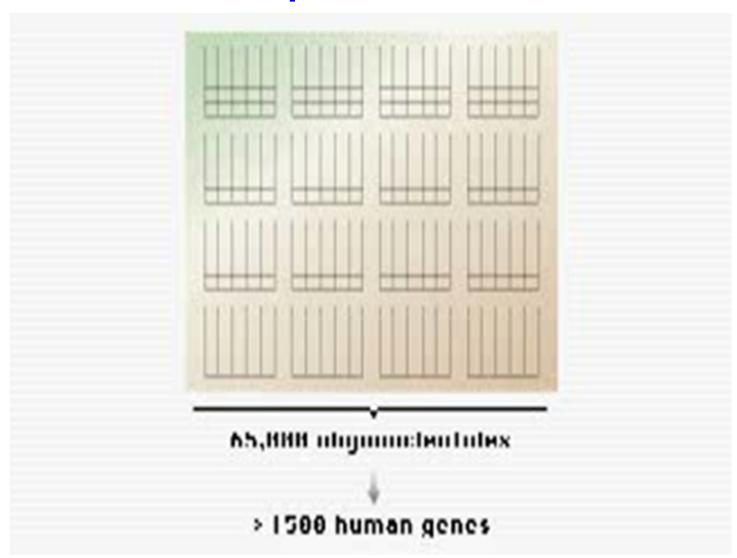
Human Protein Atlas (http://www.proteinatlas.org/)

- Methods of gene expression analysis
 - Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene
 - Use of the data available in public databases
 - Tissue- and cell-specific gene expression analysis
 - Quantitative analysis of gene expression
 - DNA and protein chips

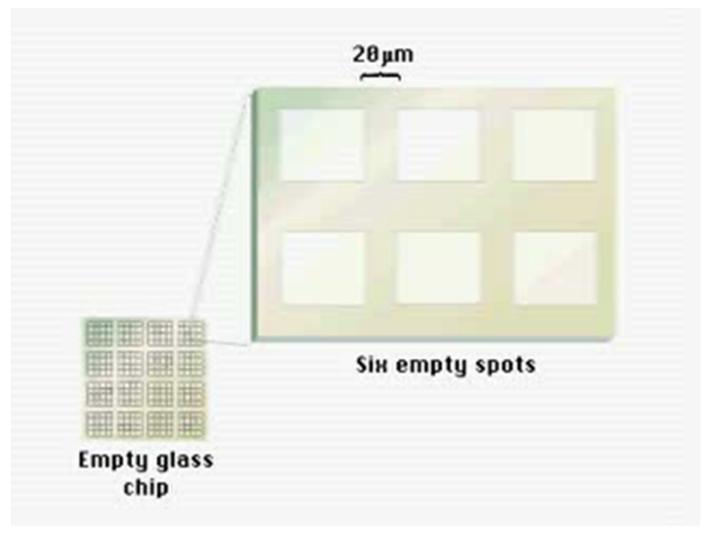
DNA Chips

- Method, which provides quick comparison of a large number of genes/proteins between the test sample and control
 - Oligo DNA chips are used the most
 - There are commercially available kits for the whole genome
 - company Operon (Qiagen), 29.110 of 70-mer oligonucleotides representing 26.173 genes coding proteins, 28.964 transcripts and 87 microRNA genes of *Arabidopsis thaliana*
 - Possibility of use for the preparation of photolithography chips facilitation of oligonucletide synthesis e.g. for the whole human genome (about 3,1 x 10⁹ bp) jit is possible to prepare 25-mers in only 100 steps, by this technique

Chips not only for the analysis of gene expression, but also for e.g. Genotyping (SNPs, sequencing with chips, ...)


Affymetrix ATH1 Arabidopsis genome array

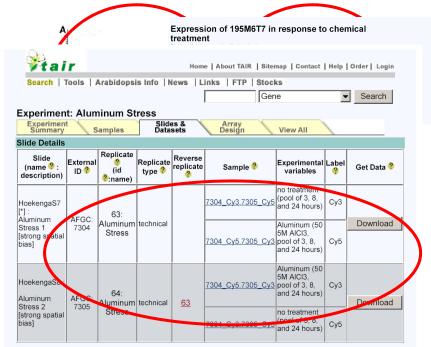
Number of arrays	One							
Number of sequence represented	>24,000 gene sequences							
Feature size	18 µm							
Oligonucleotide probe length	25-mer							
Probe pairs/sequence	11							
Control sequences	E. coli genes bioB, bioC, bioD. B. subtilis gene lysA. Phage P1 cre gene. Arabidopsis maintenance genes GAPDH, Ubiquitin, and Actin							
Detection sensitivity	1:100,000*							



DNA Chips

Photolitography

DNA Chips


For the correct interpretation of the results, good knowledge of advanced statistical methods is required

It is necessary to include a sufficient number of controls and

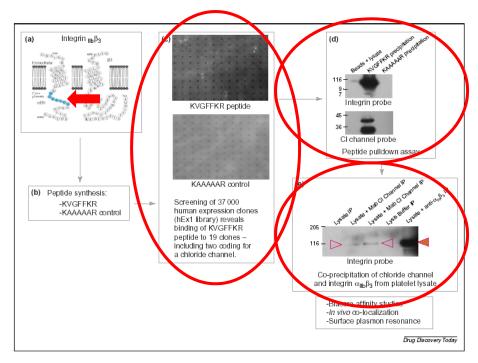
repeats

 Control of accuracy of the measurement (repeated measurements on several chips with the same sample, comparing the same samples analysed on different chips with each other)

- Control of reproducibility of measurements (repeated measurements with different samples isolated under the same conditions on the same chip – comparing with each other)
- Identification of reliable measurement treshold
- Finally comparing the experiment with the control or comparing different conditions with each other -> the result

Currently there's been a great number or results or various experiments in publicly accessible databases

Che et al., 2002

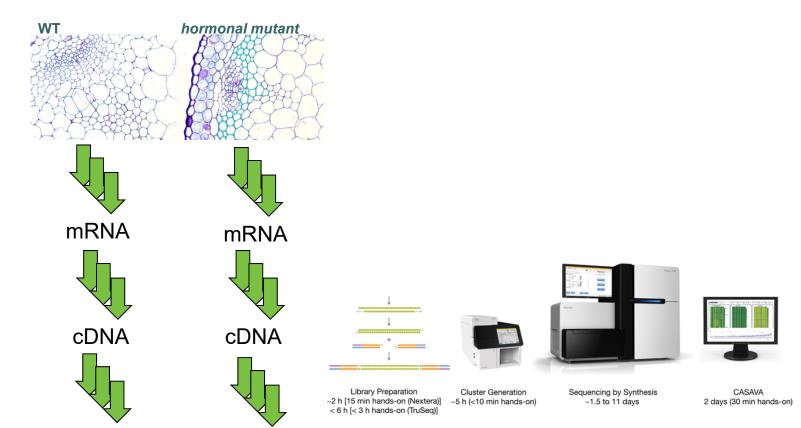

Protein Chips

- Protein chips
 - Chips with high density containing 10⁴ proteins
 - Analysis of protein-protein interactions, kinase substrates and interactions with small molecules
 - Possibility of using antibodies more stable than proteins

Protein Chips

- Identification of proteins interacting with integrin $\alpha_{IIb}\beta_3$ cytoplasmic domain of platelets
 - Expression of cytoplasmic part as a fusion peptide biotin-KVGFFKR
 - Analysis of binding to the protein chip containing 37.000 clones of *E.* coli expressing human recombinant proteins
 - Confirmation of interaction by pulldown analysis of peptides and by coprecipitation of whole proteins as well (e.g. chloride channel lcln)
 - Other use: e.g. in the identification of kinase substrates, when substrates are bound to the chip and exposed to kinases in the presense of radiolabeled ATP (786 purified proteins of barely, of which 21 were identified as CK2α kinase substrates; Kramer et al., 2004)

Lueking et al., 2005



- Methods of gene expression analysis
 - Qualitative analysis of gene expressior
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene
 - Use of the data available in public databases
 - Tissue- and cell-specific gene expression analysis
 - Quantitative analysis of gene expression
 - DNA and protein chips
 - Next generation transcriptional profiling

Next Gen Transcriptional Profiling

Transcriptional profiling via RNA sequencing

Sequencing by Illumina and

number of transcripts determination

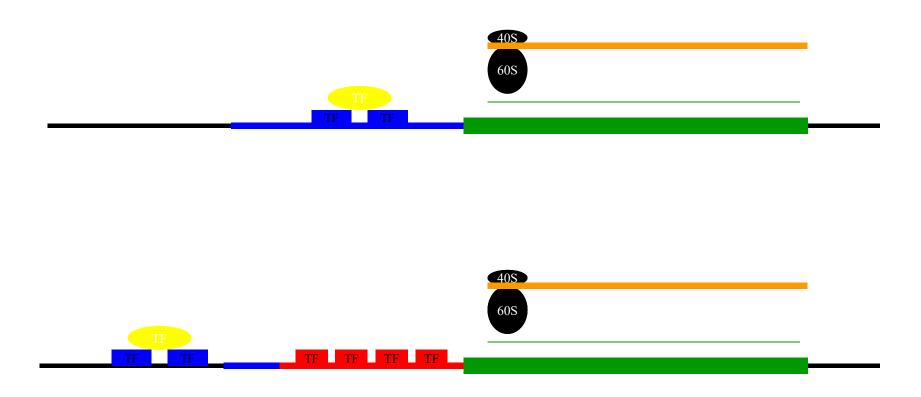
Results of –omics Studies vs Biologically Relevant Conclusions

Transcriptional profiling yielded more then 7K differentially regulated genes...

Ddii et al.. unpublished

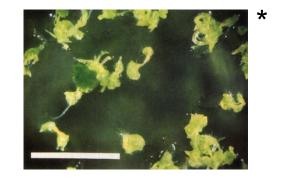
gene AT1G07795 HRS1 ATMLO14 NRT1.6	1:2414285-2414967 1:4556891-4558708 1:9227472-9232296	wt wt wt wt		OK OK	0	1,1804	1.79769e+308 1.79769e+308	1.79769e+3 08 1.79769e+3	6.88885e-05	0,00039180 1 4.67708e-	significant) 1 yes yes
HRS1 ATMLO14	1:4556891-4558708 1:9227472-9232296	WT WT	MT	ОК		,		08 1.79769e+3 08	6.88885e-05	1 4.67708e- 05	1 yes
ATMLO14	1:9227472-9232296	WT			0	0,696583	1.79769e+308	08		05	yes
ATMLO14	1:9227472-9232296	WT			0	0,696583	1.79769e+308		6.61994e-06		yes
			MT	OK							4
					0	0.514609	1.79769e+308		9.74219e-05		o 5 yes
NRT1.6	1:9400663-9403789	\A/T				-,		1.79769e+3		3.50131e-	,
		V V I	MT	OK	0	0,877865	1.79769e+308		3.2692e-08	07	yes
AT1G27570	1:9575425-9582376	WT	MT	ок	0	2 0020	1.79769e+308	1.79769e+3 08	9.76039e-06	6 6470 05	1/00
A11G27570	1:95/5425-95623/6	VVI	IVI I	UK	U	2,0629	1.797090+300	1.79769e+3		9.84992e-	yes
AT1G60095	1:22159735-22162419	WT	MT	OK	0	0,688588	1.79769e+308		9.95901e-08		yes
								1.79769e+3			
AT1G03020	1:698206-698515	WT	MT	OK	0	1,78859	1.79769e+308	08	0,00913915	0,0277958	yes
AT1G13609	1:4662720-4663471	WT	MT	ОК	0	3 55814	1.79769e+308	1.79769e+3 08	0,00021683	0.00108079	ves
	1.1002120 1000111			0.1	Ĭ	0,00011	0. 000 - 000	1.79769e+3	0,00021000	0,00100010	,
AT1G21550	1:7553100-7553876	WT	MT	OK	0	0,562868	1.79769e+308	08	0,00115582	0,00471497	yes
171000100	4 7000000 7000000			014		0.047054	4.70700	1.79769e+3		1.91089e-	
AT1G22120	1:7806308-7809632	WT	MT	OK	0	0,617354	1.79769e+308	08 1.79769e+3	2.48392e-06	0,00028514	yes
AT1G31370	1:11238297-11239363	WT	MT	OK	0	1,46254	1.79769e+308		4.83523e-05		yes
								1.79769e+3		5.46603e-	
APUM10	1:13253397-13255570	WT	MT	OK	0	0,581031	1.79769e+308		7.87855e-06		yes
AT1G48700	1:18010728-18012871	WT	MT	OK	0	0.556525	1.79769e+308	1.79769e+3 08	6.53917e-05	0,00037473	3 Syes
A11040700	1.10010720-10012071	** 1	IVII	OR	· ·	0,000020	1.7370301300	1.79769e+3	0.555176-65		ycs
AT1G59077	1:21746209-21833195	WT	MT	OK	0	138,886	1.79769e+308	08	0,00122789	0,00496816	yes
.=								1.79769e+3			
AT1G60050	1:22121549-22123702	WI	MT	OK	0	0,370087	1.79769e+308	08	0,00117953	0,0048001	yes
AT4G15242	4:8705786-8706997	WT	MT	OK	0,00930712	17,9056	10,9098	-4,40523	1.05673e-05	7.13983e-05	j yes
AT5G33251	5:12499071-12500433		MT	OK	0,0498375	52,2837	10,0349	-9,8119			0 yes
AT4G12520	4:7421055-7421738	WT	MT	OK	0,0195111	15,8516	9,66612	-3,90043	9.60217e-05	0,00052890)4 yes
AT1G60020	1:22100651-22105276	WT	MT	OK	0.0118377	7,18823	9,24611	-7.50382	6.19504e-14	1.4988e-12	ves
AT5G15360	5:4987235-4989182		MT	OK	0,0988273	56,4834	9,1587	-10,4392			0 yes

- Methods of gene expression analysis
 - Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene
 - Use of the data available in public databases
 - Tissue- and cell-specific gene expression analysis
 - Quantitative analysis of gene expression
 - DNA and protein chips
 - Next generation transcriptional profiling
- Regulation of gene expression in the identification of gene function by gain-of-function approaches
 - T-DNA activation mutagenesis



Gain-of-Function Approaches

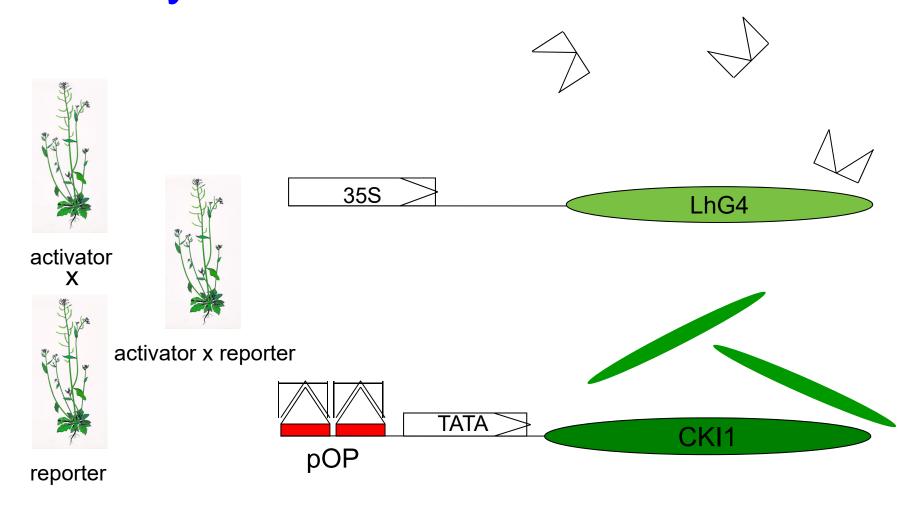
- Methods for identification of gene function using gain-of-function approaches
 - T-DNA activation mutagenesis
 - Method enabling isolation of dominant mutants by random insertion of constitutive promoter, resulting in overexpression of the gene and therefore in corresponding phenotypic changes
 - First step: preparation of mutant library prepared by tansformation of a strong constitutive promoter or enhancer
 - Next step: search of interesting phenotypes
 - Identification of the affected gene, e.g. by plasmid-rescue

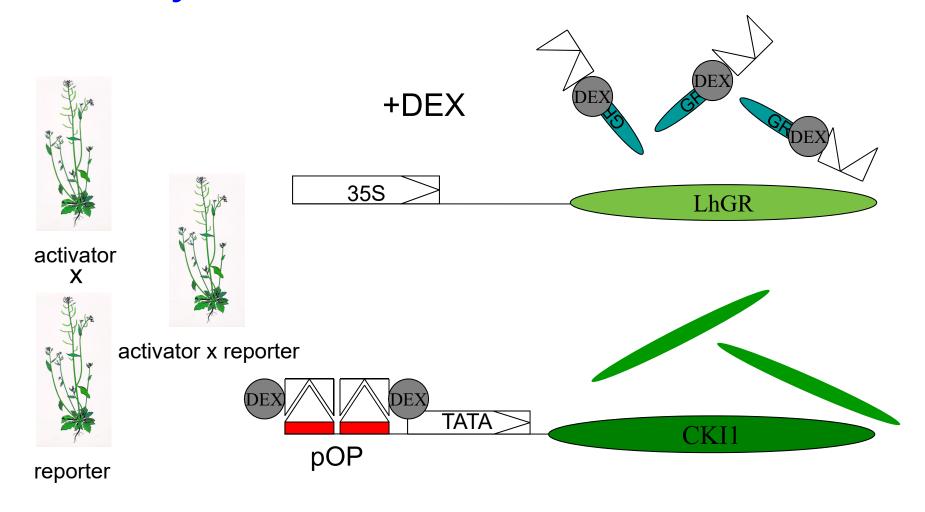

Activation Mutagenesis

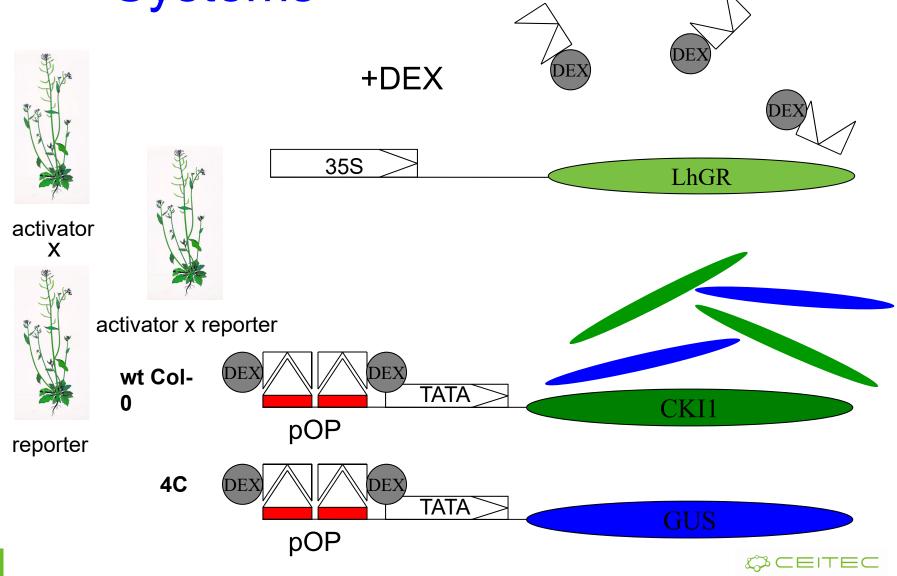
Isolation of CKI1 Gene

- Tatsuo Kakimoto, *Science* 274 (1996), 982-985 *
- Isolation of the gene using activation mutagenesis

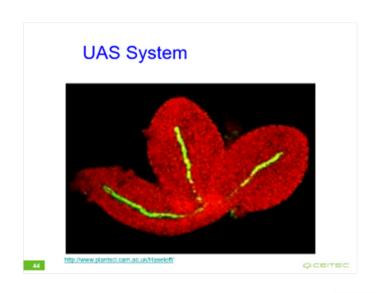
phenotype is a phenocopy Mutant exogenous application of cytokinins (CKI1, **C**YTO**K**ININ **I**NDEPENDENT 1)

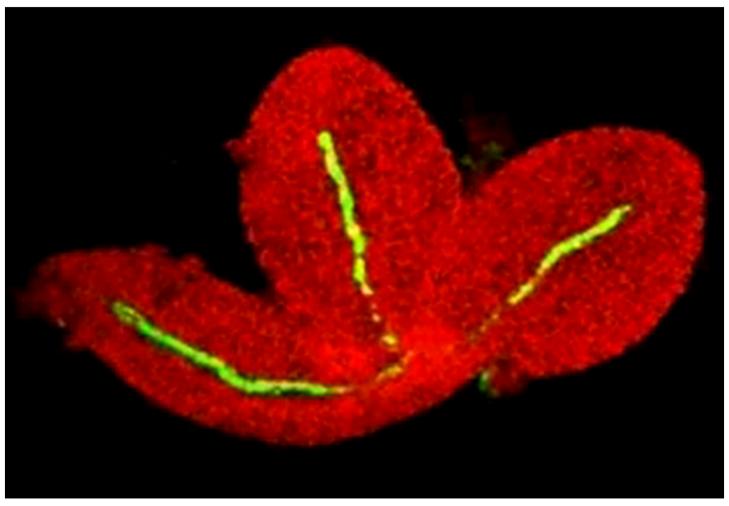

plasmid 35S::CK K2 **K**1 rescue 1 cDNA t-zeatin no hormones




Outline

- Methods of gene expression analysis
 - Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene
 - Use of the data available in public databases
 - Tissue- and cell-specific gene expression analysis
 - Quantitative analysis of gene expression
 - DNA and protein chips
 - Next generation transcriptional profiling
- Regulation of gene expression in the identification of gene function by gain-of-function approaches
 - T-DNA activation mutagenesis
 - Ectopic expression and regulated gene expression systems

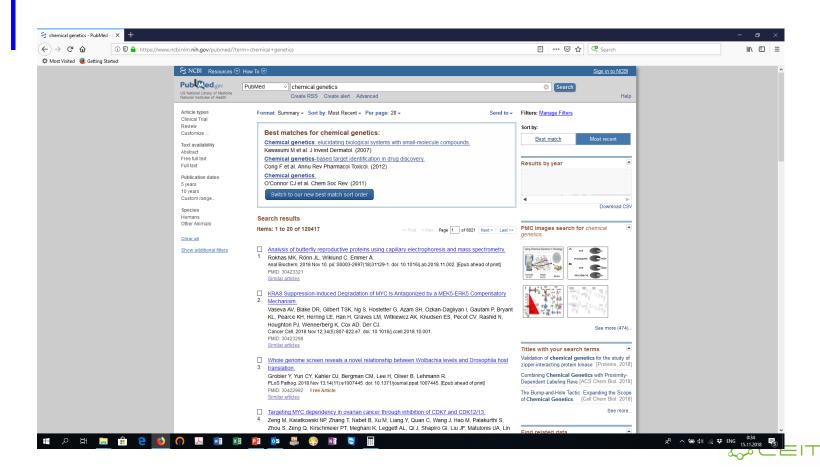




- Regulated transgene expression systems
 - Allow time- or site-specific regulation of gene expression, leading to a change in phenotype and thereby identification of the natural function of the gene
 - pOP system
 - UAS system

UAS System

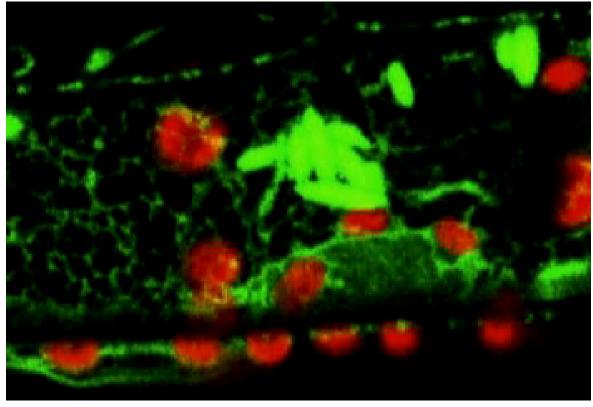
http://www.plantsci.cam.ac.uk/Haseloff/



Outline

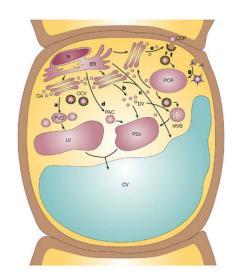
- Methods of gene expression analysis
 - Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene
 - Use of the data available in public databases
 - Tissue- and cell-specific gene expression analysis
 - Quantitative analysis of gene expression
 - DNA and protein chips
 - Next generation transcriptional profiling
- Regulation of gene expression in the identification of gene function by gain-of-function approaches
 - T-DNA activation mutagenesis
 - Ectopic expression and regulated gene expression systems
- Chemical Genetics

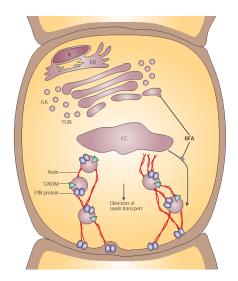
- New trends
 - "chemical genetics" more than 50.000/120.417 records in PubMed database (16.10. 2008/15.11. 2018, an increase of >240 %)

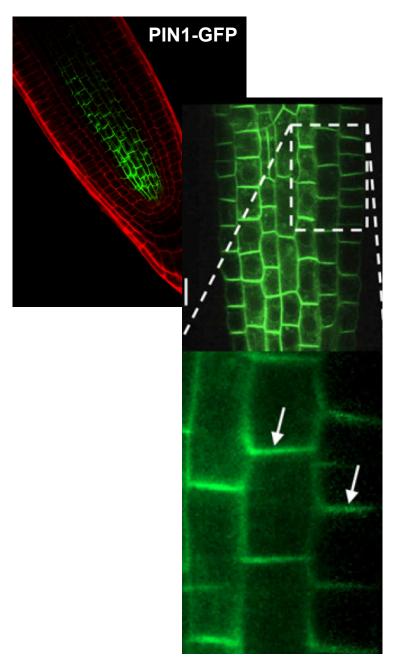


New trends

- "chemical genetics" more than 50.000/130.437 records in PubMed database (16.10. 2008/24.10. 2019, an increase of >260 %)
- Like in the case of genetics, there are also "forward" and "reverse" genetics approaches
- Unlike in "classical" genetics approaches, the subject of study is not a gene, but a protein
- Chemical genetics tries to identify either the target protein after a chemical treatment and after following phenotypic changes ("forward" chemical genetics) or chemicals able to interact with protein of interest ("reverse" chemical genetics)
- For that purpose there are carried out searches in the libraries of various chemicals (thousands of entries, comercially available)
- example: analysis of endomembrane transport in plants




- Analysis of mechanisms of endomembrane transport by chemical genetics approaches
 - In plants cells there occurr very dynamic processes mediated mainly by endomembrane transport

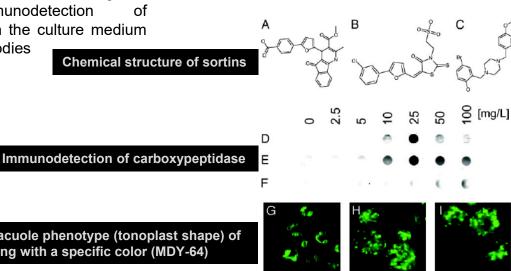


- Analysis of mechanisms of endomembrane transport by chemical genetics approaches
 - In plants cells there occurr very dynamic processes mediated mainly by endomembrane transport (see film, GFP targeting to the ER)
 - Endomembrane transport is an important regulatory mechanism in signal transduction and regulation of cellular processes

Vacuole Nucleus Anterograde Retrograde transport transport GNL1 COPI Trans-Golgi network TGN/EE MVB/PVG RE GN Multivesicular bodies-late Recycling endosome endosome (prevacuolar compartment) PIN1

Huang et al., 2010

Analysis of mechanisms of endomembrane transport

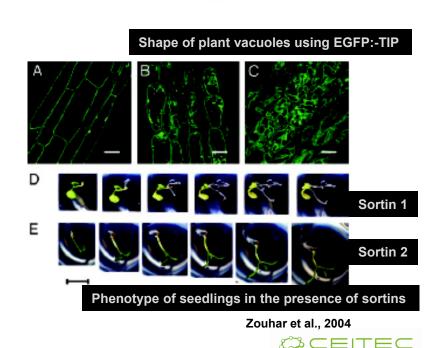

Detection of vacuole phenotype (tonoplast shape) of yeast by staining with a specific color (MDY-64)

chemical genetics approaches

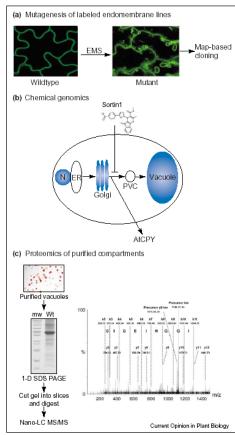
By searching in the "library" of chemicals there were identified those, that lead to the secretion of enzyme (carboxypeptidase Y) in yeast (S. cerevisiae) - this enzyme is normally transported to the vacuole via the endomembrane transport

> Analysis of changes in secretion using dotimmunodetection blot and carboxypeptidase Y in the culture medium with monoclonal antibodies

Chemical structure of sortins



Zouhar et al., 2004


 Analysis of mechanisms of endomembrane transport by chemical genetics approaches

- By searching in the "library" of chemicals there were identified those, that lead to the secretion of enzyme (carboxypeptidase Y) in yeast (*S. cerevisiae*) this enzyme is normally transported to the vacuole via the endomembrane transport
 - Analysis of changes in secretion using dotblot and immunodetection of carboxypeptidase Y in the culture medium with monoclonal antibodies
- Identified compounds ("sortins") were able to induce similar changes in *Arabidopsis* as well – transport mechanisms are conserved in yeast and in plants
- For detailed identification of the molecular proces affected by one of the identified "sortins", the analysis of its influence on a secretion of a marker protein (AtCPY) was performed sortin 1 specifically inhibits only this secretory pathway
- Identification of mutants with altered sensitivity to sortin 1 (hyper- or hypo-sensitive mutants) by EMS mutagenesis

 Analysis of mechanisms of endomembrane transport by chemical genetics approaches – summary

- GFP::d-TIP vacuole membrane (tonoplast) labelling and identification of mutations leading to altered tonoplast morphology
- Chemical genetics in combination with classical genetics – identification of proteins participating in regulation of endomembrane transport
- Proteomics approaches identification and analysis of vacuole proteome

Summary

- Methods of gene expression analysis
 - Qualitative analysis of gene expression
 - Preparation of transcriptional fusion of promoter of analysed gene with a reporter gene
 - Preparation of translational fusion of the coding region of the analysed gene with reporter gene
 - Use of the data available in public databases
 - Tissue- and cell-specific gene expression analysis
 - Quantitative analysis of gene expression
 - DNA and protein chips
 - Next generation transcriptional profiling
- Regulation of gene expression in the identification of gene function by gain-of-function approaches
 - T-DNA activation mutagenesis
 - Ectopic expression and regulated gene expression systems
- Chemical Genetics

Discussion

