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Aims for today

• Introduce the general NGS analysis pipeline and touch (almost) all parts of analysis in 
order to get the general idea

• Explain how the raw read files are created and what is their format



What we learned so far about NGS data analysis…

1. There are tens to hundreds of different algorithms/SW solutions available for 
analysis of NGS data

2. There is no “one and the best” way to perform an analysis. The final 
selection/pipeline you use largely depends on:
• Your experiment hypothesis and sample type
• The latest review of similar methods for the analysis step you just read
• The accessibility and comprehensibility of the algorithm/SW solution (in other 

words, never use something you do not understand!)
• The compatibility of inputs/outputs between algorithms from different steps



….

3. There is NO tool, that can perform every analysis from the very beginning to the end -
> like in any other analysis
4. Most of the tools are command-line based – many work the best under Linux or 
MacOS environments
5. Windows is the worst environment you can use
6. The tools are written in many different languages: Python, Java, Perl, C++, R…
7. You do not need to become expert in programming in these languages, however, you 
need to understand how the tools are installed and used



The NGS 
analysis 
pipeline



Step 0: 
base calling 
(image analysis) 
+ base quality 
control



Sequencing by 
Synthesis -
Fluorescently labeled
Nucleotides (Illumina)

• During the process, clusters of same sequences are created



Step 0: base calling 
(image analysis)

• The identity of each base of a cluster is read off from 
sequential images 

• One cycle -> one image 





Flow-cell 
imaging





Getting the 
sequences from 
clusters

• Illumina pipeline

Firecrest (image analysis)
Locates clusters and calculates intensity and noise 

Bustard (base calling)
Deconvolutes signal and corrects for cross-talk, phasing 



Image analysis data output

• 100 tiles per lane, 8 lanes per flow cell, 36 cycles
• 4 images (A,G,C,T) per tile per cycle = 115,200 images
• Each tiff image is ~ 7 MB = 806,400 MB of data
• 1.6 TB per 70 nt read, 3.2 TB for 70 nt paired-end read
• Most technologies are erasing intensities as they are sequencing, because of a too 

high amount of data



Step 0: 
base calling 
(image analysis) 
+ base quality 
control



Base call quality 
control

• Quality control (QC) of each base 
call is automatically performed by 
the sequencing platform

• In other words: For each letter in a 
read, we estimate the probability 
of it being erroneous (P).

• QC per base is specialized for each 
platform – each platform must 
solve challenges unique to the 
underlying sequencing technology



Alternative base 
calling 
algorithms

• Multiple algorithms were proposed reporting 
improvements in sequence quality with respect to 
the manufacturer's algorithms

• See some reviews:
• Cacho, Ashley & Smirnova, Ekaterina & 

Huzurbazar, Snehalata & Cui, Xinping. (2015). 
A Comparison of Base-calling Algorithms for 
Illumina Sequencing Technology. Briefings in 
bioinformatics. 17. 10.1093/bib/bbv088. 

• Ledergerber, Christian & Dessimoz, 
Christophe. (2011). Base-calling for next-
generation sequencing platforms. Briefings in 
bioinformatics. 12. 489-97. 
10.1093/bib/bbq077. 



The PHRED score

Qphred = - 10 x log10P(error)

• The Phred quality score is the negative ratio of the error probability to the reference level of P = 1 expressed 
in Decibel (dB). 

• The error estimate is based on statistical model providing measure of certainty of each base call 
in addition to the nucleotide itself 

• These statistical models base their error estimate on: 
• Signal intensities from the recorded image 
• Number of the sequencing cycle 
• Distance to other sequence colonies 

• Phred score is recoded using ASCII in fastq file 

Phred score Probability of 
incorrect base 
call

Base call

10 1 in 10 90%

20 1 in 100 99%

30 1 in 1000 99.9%

40 1 in 10 000 99.99%

50 1 in 100 000 99.999%

60 1 in 1 000 000 99.9999%



Phred score encoding in 
ASCII

https://en.wikipedia.org/wiki/FASTQ_format



FASTA and 
FASTQ formats
• The reads obtained from the sequencer 

are typically stored in fasta (just the 
sequences) or fastq (sequences + QC 
measure) format files. 

• For paired-end reads, we usually obtain 
two files. 

• Reads are not generally grouped by 
strand, only by the order in which they 
were sequenced. 



FASTA format

• General format to represent sequences 

• Two lines per sequence (read) 
• ID line (starting with >) 
• Sequence line 

• Typical file extension: .fa or .fasta

• HWI-ST132 - unique instrument name 
• 633 - run ID 
• D17U2ACXX - flowcell ID 
• 8 - flowcell lane 
• 1101 - tile number within lane 
• 14830 - x-coordinate of cluster within tile 
• 2376 - y-coordinate of cluster within tile 
• 1 - member of pair (1 or 2). Older versions: /1 and /2 
• Y/N - whether the read failed quality control (Y = bad) 
• 0 - none of the control bits are on 
• CATGCA - index sequence (barcode) 



FASTQ format • Combines sequence and base call quality information. 

• Typical file extension:.fastq

• Four lines per sequence (read): 
• ID (starting with @) 
• Sequence line 
• Another ID line (starting with +)
• Base qualities (one for each letter in the sequence) 



Step 1: 
Read quality 
control and 
data filtering



Step 1: Read quality 
control and data 
filtering

• Uses the output file with information about the quality of base 
calls (.fastq)

• First step in the pipeline that deals with actual sequencing data 
in base or color space 

• Several metrics are evaluated, not all of them use the Phred score information:
• Distribution of quality scores at each sequence, Sequence composition, Per-sequence and 

per-read distribution of GC content, Library complexity, Overrepresented sequences

• Initial overview – already in base calling SW 
• More quality overview – SW solutions SolexaQA, FastQC



Step 1: Read quality 
control and data 
filtering

• Based on the quality measures, we decide to remove low 
quality bases and reads

• Trimming – removes low quality or unwanted bases from reads, thus shortening 
them.  Is applied to increase the number of mappable reads.

• Filtering – removes whole reads that do not meet quality standards (e.g. too 
short etc) 



Step 2: 
Alignment 
(mapping)



Step 2: Alignment (mapping)

• To know, where the short reads (in 
our filtered .fastq file) come from 
(which part of the genome or 
transcriptome do they represent) 
they need to be (in most instances) 
aligned to a reference sequence



Reference 
sequence

• The reference sequence can be a genome, 
a transcriptome or a collection of specific 
sequences. 

• Typically, the reference sequence(s) is given 
in a .fa or .fasta file 

• An alternative is the GTF (gene transfer 
format) - stores gene structure 

• BED format (designed for annotation tracks 
in genomic browsers) 

(we will learn about where to get the reference 
sequences in one of the next lectures) 



Step 2: Alignment 
(mapping)

• Intuitively an easy task 
• However, trying all the possible options (alignments), is very time consuming! 
• Efficient algorithms (aligners) exist 

• The result of mapping is stored by many algorithms in the Sequence alignment/map (SAM) 
format

• We will talk about mapping a in one of the future lectures



Step 3: 
Post-alignment 
QC and 
visualization



Step 3: Post-
alignment QC and 
visualization

• Necessary in order to see the efficiency of the alignment. 

• During the alignment, not all the reads are aligned – but what proportion?
• If they were aligned – are there any errors?
• How well is the reference genome covered?

• Important in determining whether: 
• we can proceed with the analysis or some pre-processing needs to be done 
• we need to possibly redo the alignment 
• or we need to realign those unaligned reads 



Step 3: Post-
alignment QC 
and 
visualization

Allows us to get a detailed look on 
the coverage of a given region. 

http://software.broadinstitute.org/software/igv/

IGV genome browser



Alternative 
step 2: 
Genome/transcript 
(de-novo) assembly



Alternative step 2: 
Genome/transcript 
(de-novo) assembly

• When the reference sequence does not exist

• Alignment is dependent on the existence of reference sequence. 
• However – sometimes this reference does not exist! – de novo genome assembly – we need to 

practically create the reference genome. 
• The assembly is sometimes preferred in order to identify large structural rearrangements even 

when reference genome is known. In transcriptomics we can use it to detect alternative 
splicing events 



Step 4: 
Feature 
detection 
(quantification)



Step 4: Feature 
detection 
(quantification)

• Creates the final table with read counts for further statistical 
analyses

• A feature of interest differs based on the experiment: 
• gene, exon, intron… (WGS, WES) 
• transcript, isoform (RNA-seq) 
• variant - SNP, insertion, deletion, CNV - (WGS, WES, targeted sequencing) 
• promotor sequence (ChIP-Seq) 

• In transcriptomics NGS experiments, the emphasis is on quantification of known transcripts 
(unless the aim is to get new isoforms) – we quantify the abundance of the RNA. 

• In genomic NGS experiments, the emphasis is more on the detection of structural changes 
(the quantification is the % of alternative alleles found). 



Step 4: Feature 
detection 
(quantification)

• Creates the final table with read counts for further statistical 
analyses

• The final output of this step is always a matrix with: 

• Information about the feature (ID, name, variant…) 

• Quantification of this feature in each of the samples 



Step 5: 
Statistical data 
analysis



Step 5: Statistical 
data analysis

• The final matrix is input to four main analysis types: 

Group comparison (between 
groups of samples or groups of 
features) 
•Differential gene expression / 
splicing 
•Differential variants detection 

Group discovery (within samples 
or features) 

•Clustering of patients into 
unknown subtypes based on 
their sequencing profiles 
•Searching for genes with similar 
expression 

Group prediction (usually for 
samples) 

•Finding genes for diagnosis… 

Special analyses: pathway analysis, construction of gene networks, analysis of survival, … 



Analyzing and writing 
the code

You cannot NGS analyze without scripting (writing of commands) and keeping track of it ! 



Why scripting and keeping track? 

1. Reproducibility (you or anyone else must be able to reproduce your analysis 
step by step) 

2. Time saving (if something in your data changes, you can simply run all the 
scripts again on new dataset) 

3. No one-size-fits-all solutions (i. no program can cover all the possible 
combinations of tools; ii. it is easier to change something in the existing script 
than write it all over again) 

4. Batch-execution of commands (high-performance cloud and cluster 
computing requires commands in batches) 



Conversion, conversion, conversion

• … be prepared for never-ending format conversions …
(wrong format of input file is usually one of the most common reasons of errors)
• SAM to BAM, 
• BAM to SAM, 
• sorted SAM to BAM, 
• BAM to sorted SAM, 
• BAM to indexed BAM, 
• aligned, realigned, indexed, ….



Examples of scripts for different analysis steps

• Quality control (using prinseq) 
$ perl prinseq-lite.pl -fastq file1.fastq -graph_data file1.gd -out_good null -out_bad
null 

• Alignment (using bwa) 

$ bwa sampe -P hg19.fa file1.sai file2.sai \ file1.fastq file2.fastq > file_bwa.sam

• Variant calling 
$ java -jar GenomeAnalysisTK.jar -T HaplotypeCaller \

-R hg19.fa \

-I file1.bam -I file2.bam -I file3.bam -I file4.bam \

-stand_call_conf 30 -stand_emit_conf 10 \

-o output.raw.snps.indels.vcf 



Small first 
example

1. Download the toy example .fastq file http://www.ebi.ac.uk/ena/data/view/SRR014849 

$ wget ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR014/SRR014849/SRR014849_1.fastq.gz 

2. Unzip the file

$ gunzip SRR014849_1.fastq.gz 

3. See the header of the file: 

$ head SRR014849_1.fastq 

4. Calculate total number of lines 

$ wc -l SRR014849_1.fastq 

5. Calculate total number of reads 

$ wc -l SRR014849_1.fastq | awk '{print $1/4}' 


