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Abstract 
The long-term variations of the orbital and rotational parameters 
of the Earth are the key ingredients for the insolation forcing in 
the Milankovitch theory. This chapter describes the main aspects 
of these variations, concentrating on the aspects that are cur­
rently recovered in the stratigraphic record. A special emphasis 
is given to the very long periodic terms (> 1 Myr period) that 
modulate the astronomical solutions and that are essential for 
understanding the chaotic behavior of the solar system. 

4.1 Introduction 
According to the Milankovitch theory (Milankovitch, 
1941), some of the large climatic changes of the past orig­
inate from the variations of the Earth's orbit and of its 
spin axis resulting from the gravitational pull of the other 
planets and the Moon. These variations can be traced over 
many millions of years (Myr) in the geological sedimen­
tary record, although the mechanisms that transfer the 
forcing insolation to the sedimentary variations are not 
precisely known. 

The recovery of astronomical signal in stratigraphic 
sequences has allowed local or global calibration of the 
stratigraphic records, and cyclostratigraphy is now a very 
active field of research. After the astronomical calibration of 
the Neogene Period (Lourens et al., 2004; Hilgen et ah, 
2012), focus turned toward the entire Paleogene Period 

(e.g., Kuiper et al., 2008; Westerhold et al., 2012, 2014, 
2015; Boulila et al., 2018), covering the entire Cenozoic Era. 

Extending this procedure through the Mesozoic Era and 
beyond is difficult, as the solar system motion is chaotic 
(Laskar, 1989, 1990). It is thus not possible to retrieve the 
precise orbital motion of the planets beyond 60 Ma from 
their present state (Laskar et al., 201 lb). Nevertheless, the 
existence of a stable component in the astronomical forc­
ing, the 405-kyr metronome (e.g., Laskar et al., 2004), has 
allowed the continuation of the astronomical calibration of 
geologic time deep into the Mesozoic Era and even into 
the Paleozoic Era and the Precambrian. 

Detailed compilations of currently available cyclostra-
tigraphic records have been summarized recently (e.g., 
Hinnov and Hilgen, 2012; Hinnov, 2018b; Huang, 2018), 
and we refer to these. In this chapter, we will focus on the 
astronomical solution and especially on the long cycles of 
these solutions, with the aim to answer some of the com­
mon questions that arise in the analysis of long sequences 
of stratigraphic records. 

4.1.1 Historical introduction 

During the 18th century the question of the stability of the 
solar system was of prime importance, as it was also nec­
essary to decide whether Newton's law properly describes 
the motion of the celestial bodies (for details, refer to 
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time (Ma) before present 

BR74 
La93 

La2004 

time (Ma) before present 

With only six planets (Ugran'ge. JJuSS nT '^STn'i S°1Uti°n ^ S°lar SyStem' 
1974) added some terms of order 2 with respect to the masses and Hecm.* f • • NePtune ln STO (Stockwell, 1873); BR74 (Bretagnon, 

1993) is a numerical solution of the averaged equations that contains all terniTun"alnclination' U93 (Laskar, 1988. 1990; Laskar et al„ 
inclination, the contribution of the Moon and general relativity La04 (Laskar et al °2m4r * '° maSSCS a"d degr6e S'X in eccentricit>' and 

(USkar " #1- 2004) ,s a numerical integration of the full equations of motion. 

Laskar. 2013). A very important result of this quest was 
the -derivation of the first long-term models for the solar 
system orbital evolution. A first result, of fundamental 
importance for cyclostratigraphy is the demonstration at 
first order of the planetary masses, of the invariance of the 

*? °rbitS °f the planets Laplace, 
776). This result is also practically verified in the full 

nonapproximated system of equations, with the major con­
sequence that the orbital period of the Earth does not 

T •" town of 

of the long-term motion of the Earth's orbit is due to 
Lagrange at the end of the 18th century (Lagrange, 1783, 

84). Of course, the solution of Lagrange only includes the 
planets visible to naked eye (Mercuiy, Venus, Earth, Mars, 
upiter, and Saturn), but it already provides a very accurate 

representation of the Earth's orbital motion over the past 
million years. In Lagrange's solution, all the main features 
o e variation of the Earth's orbital elements are present, 

u it was only after the work of Agassiz (1840), showing 
i ence of past Ice Ages, and the new solution of Le the year has practically not changed V^- °f ^ ̂  A^' th^w so^m of L 

ears- By contrast, Lagrange and Laplace found St in * IT mClUding Ura"US 1Le V™' '840. 1841, 1856 
appr°Ximatlon of the averaged equations of ™ ihadvocated 11131 the variations of the Earth's orbit 

motion the eccentncity, inclination, and orientation of the mt 6 large dimatic variations of the past (Croll, 

manner wTf with time, in a quasiperiodic S, T 8e" (2°10) for more historical details). The 
in a wav thaTST"68 °f fVW"1 te"S °f ^10 Myr. but added * on was "Pgraded by Stockwell (1873) who 
(Lagrange 1778- iT "0t T™ f°r planetary collisions orbital « i ,COntnbutlon of Neptune (Fig. 4.1). This latest 

pace, 75); the first full computation tjon f°yIOn was used Pilgrim (1904) for the computa-
ot the variation of the Earth spin axis evolution. 

1. The relative loss of the mass of ihe Sun is of about 9 x — 

SU" ^ - °f ^ — - W - >aw- one can 

2. Laplace's work was largely InsmreH r 'maj°r ^ a"d a decrease of only 1.5 hours in the orbital 
y 8range'S manus«pt that was submitted in 1774 , , 

""tea in 1774 (see Laskar, 2013). 



Astrochronology Chapter | 4 141 

Nevertheless, in his theory of the insolation of the Earth 
Milankovitch (1941) considered that the solution of Le 
Verrier (1856) was more reliable and asked his colleague 
Miskovic to update Le Verrier's solution for the new values 
of the planetary masses and to use it for the computation of 
the orientation of the spin axis of the Earth with respect to 
its orbit. After comparison to the solution of Stockwell 
(1873) and Pilgrim (1904), Milankovitch decided to limit his 
insolation computations to the most recent 600,000 years. 

With the use of computers, it was possible to extend 
these analytical computations significantly. The solution of 
Bretagnon (1974) for the solar system comprises 318 peri­
odic terms, while the secular system of Laskar, 1988 (1990) 
and Laskar et al. (1993) contains 153,824 terms, including 
the averaged contribution of the Moon and general relativity. 
Nevertheless, these analytical perturbative methods always 
require some truncation in series expansions and thus have 
some limitations in precision. With the improvement in com­
puter speed and numerical integration algorithms, it is now 
possible to directly integrate the equations of motion, as in 
the La2004 solution (Laskar et al., 2004). 

When comparing the various solutions that have been 
used in stratigraphic astrochronology (Fig. 4.1 A), it appears 
that although Lagrange solution is somewhat off in the first 
500,000 years, it already provides a good measure of the 
qualitative behavior of the Earth's orbital solution. The 
other solutions are in quite good agreement over the first 
600,000 years but begin to depart from one another after 
this date. On the contrary, the semianalytical solution La93 
(Laskar, 1988, 1990; Laskar et al., 1993) is a perfect match 
to the full numerical solution La2004 (Laskar et al., 2004) 
over the most recent 2 Myr and even over the last lOMyr 
(see Laskar et al., 2004). Starting with La93, the orbital 
solution can thus be considered as perfectly known over 
the past few Myr. The evolution of the precision of the 
solutions is particularly striking beyond 1.5 Ma (Fig. 4.IB). 
The difference is very large with respect to the solution of 
Bretagnon (1974) and Berger (1978) but insignificant with 
respect to the more recent La2004. 

4.1.2 The astronomical solution 

Due to the gravitational interactions of the planets, the 
Earth s orbit and spin axis present significant variations in 
time. The orbit precesses slowly on its plane in space 
(Fig. 4.2), and the equator precesses around the normal to 
the orbit (Fig. 4.3). This slow precession motion of the 
planetary orbits is described by a combination of periodic 
modes related to the precession of the perihelions with fun­
damental secular frequencies g, (/ = 1, 2, ... , 8) and pre­
cession of the orbital planes in space with fundamental 
secular frequencies ((=1,2,..., 8) (Table 4.1). In addi­
tion, the eccentricity of the orbit and the inclination with 
respect to the fixed reference frame oscillates with the same 

FIGURE 4.2 The eccentricity e is the ratio of the distance between the 
two foci of the ellipse (SS) and the major axis of the ellipse (2a). At peri­
helion the Earth-Sun distance is a(l - e); at aphelion it becomes a(l + e). 
The horizontal line is the direction of the ascending node (Fig. 4.3). 

NP 

FIGURE 4.3 Earth angular parameters. The instantaneous orbital plane 
of the Earth, the ecliptic of date, is referred with respect to a fixed refer­
ence frame [mean ecliptic J2000 in La2004 (Laskar et al., 2004) and invari­
ant plane in La2010 (Laskar et al., 201 la)], with a fixed origin j0 (equinox 
J2000 in La2004). The ecliptic of date is defined by the longitude of the 
ascending node fl and the inclination i. The argument of perihelion a) is 
the angle from the line of node SN to the perihelion and the true anomaly v 
the angle from perihelion to the position of the Earth. The equinox of date 
7 is the intersection of the equator with the ecliptic of date. The spin axis 
of the Earth is directed toward the North Pole (NP) and ip is the spin angle. 
The obliquity s is the angle from the normal to the ecliptic of date (n) to 
the spin axis (NP). The precession angle ip describes the motion of the spin 
axis of the Earth around n. The longitude of perihelion to is the sum of the 
longitude of the node Q and the argument of perihelion u; (to = fl + u). It 
should be noted that the two angles, $1, u, are not on the same plane. 

frequencies. The precessing of the motion of the spin axis 
enters an additional frequency, the precession frequency p. 

4.2 Eccentricity 
The eccentricity of the Earth e is a measure of the shape of 
its orbit (Fig. 4.2). At perihelion the Sun-Earth distance 
(,SE) is a(\ - e) and a( 1 + e) at aphelion. The insolation on 
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( TABLE 4.1 Main secular frequencies g, and s, of La2004 and La2010a in arcsec/year. 

La2004 La2010a Aioo Period (year) 

81 5.59 5.59 0.13 231,843 

82 7.452 7.453 0.019 173,913 

g3 17.368 17.368 0.20 74,620 

84 17.916 17.916 0.20 72,338 

8s 4.257452 4.257482 0.000030 304,407 

86 28.2450 28.2449 0.0010 45,884 

87 3.087951 3.087946 0.000034 419,696 

8a 0.673019 0.673019 0.000015 1,925,646 

St -5.59 -5.61 0.15 231,843 
s2 -7.05 -7.06 0.19 183,830 
S3 -18.850 -18.848 0.066 68,753 
SA -17.755 - 17.751 0.064 72,994 
s5 0 0 
s6 -26.347855 - 26.347841 0.000076 49,188 
s? -2.9925259 -2.9925258 0.000025 433,079 
s8 

Aioo are the observed va 
column. 

-0.691736 

iations, in arcsec/year, of the frequencie 

-0.691740 

over 100 Myr (Laskar et al., 2011 a). Th 

0.000010 

periods of the secular term are gi 

1,873,547 

ven in the last 

the surface of the planet is 1 = 1^, where 70 is the insola­
tion at 1 AU, and r-SE the Sun-Earth distance. When 
averaged over the year, that is, over the orbital period, we 
find the average annual insolation 

1M ~ • /° 
aVl -e2 

As the semimajor axis a is constant, IM depends only 

10 m! Th"enl?Clty that VadeS fr°m 0 10 about °-°6 over 
10 Ma. The relative variation of lM is thus 1.8 X 1(T5 that 
is very small. By contrast, the ratio of insolation at perihe 
lion versus aphelion is P 

(\ +e 

which amounts to 1.27 at maximum eccentricity e = 0 06 
Averaging over the Earth surface and using a ll 1 
ative model, this relation translates into a relative vS" 
Hon of temperature of a planet hT f™ , a" 
aphelion, considered as a black body,'as P ll0n t0 

6T 
% P 

T 

3. Astronomical unit. 

where T is the temperature expressed in Kelvin. Considering 
an average temperature of T=285 K (14.85°C), we obtain 
oT-4.8K for the present eccentricity (e = 0.0167), and 

17.1 K for e = 0.06. These simple examples are quoted 
ere to emphasize how the eccentricity can modulate the 

seasonal insolation. For more complete models, one can 
re er to Paillard (1998, 2001) and Bosnians et al. (2014). 

4.2.1 Decomposition of the eccentricity 

e eccentricity signal is one of the major targets for 
'C stud'es' specially for older times, before 

the 60gene Per*od- ^'s thus important to understand 
Hprrl"1 .components °f the eccentricity signal. The 
ouenn P°Sltl0n °f th'S s'gnal in terms of fundamental fre-
of thp'?S 'S ®'Ven 'n Table 4.2. In this decomposition, all 
dampntfi™5 aff recoSn'zeci as combinations of the fun-
ciselv secular frequencies (Table 4.1). More pre-
ua = o ™St terms are differences of two g, except 

quencies in\t, (S4 ~83l Indeed' a11 combinations of fre-
city are „f,, e Periociic decomposition of the eccentri-
can be ° s ! f * »• This 

y understood when one realizes that the 
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TABLE 4.2 First 10 terms (in decreasing amplitude) of 
the frequency decomposition of the Earth's 
eccentricity over the time interval [ - 15, +5] /yja 

k Hk( "/year) P (kyr) bkX 104 

1 82-85 3.200 405 107 

2 84- gs 13.652 95 81 

3 84-82 10.456 124 62 

4 83~8S 13.110 99 53 

5 83-82 9.910 131 45 

6 84-83 0.546 2373 30 

7 gi -85 1.326 978 28 

8 84~8I 12.325 105 21 

9 82 ~ 8s ~ (84 ~ 83) 2.665 486 20 

10 82-8) 1.884 688 18 

The eccentricity e can be expressed as e = eo + , b4cos(ptf + %) 
with e0 = 0.0275579. Column two lists the corresponding combination 
of frequencies where gi are the fundamental frequencies (Table 4.1). 
Source: Adapted from Laskar et al. (2004). 

important variable in the dynamical evolution of the 
solar system is not the eccentricity (e), but the complex 
variable z-e exp(iru), where w = + w. As shown in 
Figs. 4.2 and 4.3, u> is the argument of perihelion and Q 
the longitude of the ascending node. This was already 
known to Lagrange who set up the proper form for 
the computation of the long-term evolution of the solar 
system (Lagrange, 1778). This system reduces to a 
simple linear system of differential equation with con­
stant coefficients, which is now classically studied in 
the first years of university. In this linear solution, that 
we will call the Lagrange—Laplace solution, each vari­
able zi is expressed as a z,-= Ef=i a ikexp(i(gkt + 9 ik)), 
where N is the number of planets of the considered 
system (here N = 8) and gk are the fundamental frequen­
cies. When one considers a more complex model, not 
limited to the linear secular approximation, the decom­
position of Zi is more complex (e.g., Laskar et al., 2004), 
but the main terms of the solution will still be those 
corresponding to the Lagrange—Laplace solution, and a 
'arge understanding can be gained by considering only 
these terms. 

Let us thus consider the five leading terms of z — e exp i" 
the complex eccentricity of the Earth (Table 4.3 
extracted from Table 4 of Laskar et al., 2004). We can 
c°jlstruct a solution based only on these five terms, 
2. = Ei=i bke\p(igkt + 0k). As this solution is composed 
0 on|y five periodic terms, the frequency decomposition 
°f the eccentricity e(5) = lz(5)l is more straightforward and 
ls Provided in Table 4.4. In the first column, k is the index 

TABLE 4.3 The five leading terms in the frequency 
ecomposition of the complex eccentricity variable 

2 - e exp \w for the Earth over the time interval 
I ~ 15, +5] Ma (Laskar et al., 2004) 

n gk k gk ("/year) bk 9k (degree) 
1 gs 5 4.257 0.0189 30.7 
2 g2 2 7.457 0.0163 - 157.8 
3 g4 4 17.910 0.0130 140.6 
4 82 3 17.367 0.0088 -55.9 I5 g\ 1 5.579 0.0042 77.1 J 

of the term in the frequency decomposition (by decreasing 
amplitude) of e ', and k' the rank of the same term in the 
decomposition of the full Earth eccentricity (Tables 2 and 
6 from Laskar et al., 2004). It is important to note that all 
10 leading terms of the Earth's eccentricity can be 
explained by only the first 5 terms of z3. In Section 4.2.3, 
we will discuss further the outcome of the decomposition 
of Table 4.4 in the observed aspects of the Earth eccen­
tricity solution and their possible manifestations in the 
geological data. Before, it is instructive to understand the 
mathematical origin of the periodic terms involved in 
Table 4.4. 

4.2.2 Mathematical intermezzo 

Let consider 

Z = ̂ 2ake\p(i(gkt + 9k)) 
k=1 
N 

Z = ̂ atexp(iTTt) 
(4.1) 

*=1 

the expression of z = e exp(iro), where the amplitudes 
ak are positive real numbers and nk = gkt + 9k. The 
eccentricity e is then e = v^zf, where z is the complex 
conjugate of z, that is, 

z = E  a * e x p (  -  ink). 
*=1 

We have 

- 2 — zz = e l  = Ei,/ akOie\p(i(nk — 7T/)) 

= El al + Et*i akaiexp(\(nk - tt/)). 

(4.2) 

(4.3) 

We see that the arguments that appear are differences 
T T *  —  T ;  =  ( 8 k  -  8 i ) t  +  ( 0 k  -  9 , )  w i t h  f r e q u e n c i e s  g k - g h  
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'TABU 4.4 13 periodic On darrein ol e» - « whe„ 
is limited to the first five linear terms of z (Table 4.2). 

g2-g5 

Pi ("/year) 

3.200 

P (kyr) 

405 

b'k X lo4 

109 

g4-gs 

g4-g2 

ga-gs 

13.653 

10.453 

13.110 

95 

124 

99 

82 

66 

53 

g3-g2 9.910 131 44 

g4~g3 0.543 2387 35 

gi-gs 1.322 980 25 

10 g2-g> 

g4"gl 

1.878 

12.331 

690 

105 

21 

16 

10 12 g2+g4-2g5 16.853 77 16 

11 18 g3 +  g4 ~ g2 _  g5 23.563 55 13 

12 g2-g5"(g4-g3) 2.657 488 13 
13 20 g2-g5 + (g4-g3> 3.743 346 13 

itI'ki "a tT'T-1 + '<2 With e° ~ °'0269' k '? ,he rank of the ,erm by decreasing amplitude in e'5', while k" is the rank of the same term in 
(lable 4.2). Column three is the corresponding combination of frequencies, g, are the fundamental frequencies (Table 4.1). 

involving all fundamental frequencies gh But this is e2, 
and not e. With e2 = £>f, we have 

with 

e2 = e2(l+X) (4.4) 

X ~ zl akaiexp(Kxk ~ 7r,)) (4.5) 
W 

and thus assuming that X is small with respect to 1, and 
expanding up to second order in X, 

l + 2*-g *2 + 0(X3)). (4.6) 
e = e0y 

JhusX will involve differences of two frequencies 

of the'Ki "nT5 '~9 °f Table 4A but the terms 

Thee ,, k W bC SUms of two differences zk~n, 
These will be terms of order 4, involving four fundamen-
ta frequencies gi, as terms 10-13 of Table 4 4 It is also 
interesting to note that the phase of these terms will be 
opposite to the equivalent combination of areument 

because of the minus sign in Eq (4 6) 
Now we Can .em01 t0 the simp|e ofg(5) = 

strated e^er ^ wil,^ "TT* A* ^ 
order, sum of tej" ,ham,°nics of-en 

Indeed, this is well revealed by X tecfral^'h'i6 4'4)' 
c 4-4). For this simple model St • a ^ °f 

are easily identified and can then be relateS toth' ̂  
sponding MI ̂  ^co„. 

is thus remarkable that the most important features of the 
eccentricity solution of the Earth are provided by the sim­
ple model z(5> (Table 4.4). 

It should be noted that the largest periodic component of 
the eccentricity is the 405-kyr term g2 - g5. This term is fun­
damental in cyclostratigraphy as its period is very stable and 
can thus be used as a metronome for the establishment of local 
and global time scales (Olsen, 1986; Laskar, 1999; Laskar 
et al„ 2004, 2011a; Boulila et al., 2008; Hinnov and Hilgen, 
2012; Kent et al„ 2018; Hinnov, 2018a; Huang, 2018). 

4.2.3 Eccentricity modulations 

Due to the importance of the 405-kyr mode (g2 ~ gs), il is 

important to filter the data to retrieve its 405-kyr component, 
rom Fig. 4.4, it is clear that the g2 ~ gs mode does not 

occur in isolation but is surrounded by two nearby peaks, 

(rensS 48Rdin H ^^ i~ 85 ~(84 ~ 8s) and 82 ~ 85 + (84 ~ 8}) 
P • and 346 kyr period). These side terms produce a 
__U at'°n °( tlle 405-kyr component e/, with frequency 

J 83 . '8' 4-5B)- As tlle g4 ~ g3 term also appears in the 
bv n,nClty'tbe 84 ~ g-1 mocle can also be directly retrieved 
/p- ' 'Sr'"g the eccentricity in the [0:l.l]"/year interval (4) 
40S.K By superposing ea with the envelope h of ^ 
cal aithC°T0nent eb' one can see 11131 ea is 3131081 identi" 

ptase ,o 4 ms' 4-5) (sk * 
(- m r 83 modulatio|i appears also in the high ftequency 

eccentricity terms. These main terms appear 
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0 5 10 15 20 25 

freq ("/yr) 

FIGURE 4.4 Fast fourier transform (FFT) of the La2004 eccentricity solution over 33 Myr (top) and Fourier transform of the solution e<5> limited to 
the five main linear terms of z (Table 4.3). For e(5\ all the terms can be easily identified, and a combination of their corresponding frequencies are 
reported in the figure (see also Table 4.4). The periods of the corresponding terms are displayed (in kyr) in the top figure. Frequencies are expressed 
in arcsec/year ("/year): l'Vyear = 0.7716 cycle/Myr. 

(Fig. 4.4) in two sets: (g3-g2, SA ~ 82) and (g3-g5, 
- £5)- These components will both modulate with a g4 - £3 

frequency (Fig. 4.5C and D). In this case, the modulation 
envelopes ec,ed are similar and in phase with £4 - £3 (ej. 

We can explain this using our simple 5 term model. Let 
us consider the filtered eccentricity ec in the [9.3, 11 ["/year 
band. We will have 

ec = a exp(i(7r3 - 7t2)) + a'exp(i(7r4 - 7r2)), (4.7) 

where a, a' are both positive (Eq. 4.6). Thus 

ec = [a + a'exp(i(7T4 - 7t3))] exp(i(7r3 - 7r2)), (4.8) 

and as a' is positive, the slow modulation a' exp(i 
(7t4 - 7r3) appears with the same phase as ea. This is the 
same for ed (Fig. 4.5D) and for all order 2 couples 
S 3  ~ g j ,  £ 4  —  g j ,  a s  f o r  e x a m p l e ,  ( £ 3 - £  1 .  £ 4  " g o  
Fig. 4.4). Now let us consider the modulation of the 
405-kyr term, eb. This term involves three components 
in its simple approximation (Eq. 4.6) 

eb = a exp (i(7r2 — 775)) — b exp(i((7r2 - 775) - (774 - 7t3))) 
- b' exp(i((7r2 - 7T5) + (7T4 - 7T3))) 

= exp(i(7T2 - 7T5)) 
X [a — b exp(— i(7T4 — 7r3)) — b' exp(i(7T4 — 7t3)))J, 

(4.9) 

where a, b, and b' are positive. We have now a minus sign 
before b and b' (- 1/8A"2 in Eq. 4.6). This induces a modula­
tion of eb with frequency g4 - g3, but due to these minus 
signs, it will be in opposite phase with respect to ea. Indeed, 
if instead of the eccentricity, expanded as 1 + 1/2X— 1/8A-2 

(Eq. 4.6), we consider a fictitious eccentricity like expression 
1 + \/2X + 1/8X2, with the opposite sign in the terms X2 of 
fourth order,4 then the modulation in the 405-kyr band of this 
fictitious eccentricity is in phase with £4 - £3. 

4.3 Chaos in the solar system 
Since the first semianalytical long-term solutions of Laskar 
(1988, 1990) and Laskar et al. (1993), it becomes possible 
to compute reliable orbital solutions starting from the pres­
ent initial conditions (Section 4.1.1). This was confirmed 
later on by direct numerical integrations (Quinn et al., 1991; 
Laskar et al., 1992, 2004). It was previously thought that the 
progress of computers and of observational techniques 
would result in an astronomical solution with higher preci­
sion, so that time validity could be extended steadily both in 
the future and in the past as envisioned by Laplace (1812). 
But the discovery of the chaoticity of the orbital motion of 
the solar system put an end to this hope (Laskar, 1989, 1990). 

4- X is of second order in the g, (Eq. 4.5). 
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FIGURE 4.5 Filtered eccentricity of the La2010a solution (Laskar 
et al., 201 la). The filtered solutions are shifted in order to be plotted on 
the same graph. (A) ea is the filtered eccentricity in the [0, l.!]"/year 
(period > 1.18 Myr) band (+0.03) (.red). (B) eb is filtered in the [2.2, 
4.3]"/year ([301, 589] kyr period) band (purple). (C) ec is filtered in the 
[9.3, 11 ["/year ([139, 118] kyr period) band (-0.03) (green). (D) ed is fil­
tered in the [12.6, 14.5]"/year ([103, 89] kyr period) band (-0.06) (blue). 
The upper envelopes of eb. ec. ed. respectively, eb, ec, ed are plotted in 
red. The thin black curee is the (ea) curve, shifted in order to compare to 
die envelopes eb, ec, ed of eb, ec. ed. (ea) nearly coincide with ec, ed and 
is phase opposite to the eb. See the text for discussion. See also Laskar 
el al., 2011a. 

a fit to a 1 Myr long high-precision planetary ephenieris 
INPOP (Laskar et al., 2011a). La2010a is adjusted t0 

DMPOP08 (Fienga et al„ 2009) and La2010d to INPOP06 
(Fienga et al„ 2008). As it was realized that INPOP06 is 

more accurate than INPOP08 (Fienga et al., 2011), La2010d 
should be preferred to La2010a that is in agreement with the 
comparison to the updated version La2011 (Laskar et al 
2011b) that is adjusted to INPOPlOa (Fienga et al., 2011)' 
This was also confirmed through comparison with geologi­
cal data (e.g., Boulila et al„ 2012; Westerhold et al., 2012). 

4.3.1 Drifting frequencies 

Another expression of this chaotic motion is the fact that 
the main frequencies of the system (Table 4.1) are not 
constant but can drift in a significant way (Laskar, 1990-
Laskar et al., 2004), even if the system is largely conser­
vative, with minor dissipation.5 These variations are sum­
marized in col Aiqo of Table 4.1 that represents the 
variation of the different fundamental frequencies 
observed over 100 Myr. As was already described in 
Laskar (1990), these variations depend largely on the 
involved planets. Indeed, the chaos is not evenly distrib­
uted among the planets. The frequencies related to the 
outer solar system (g5, g6, g7, g8, s6, s7, ,y8) are nearly con­
stant over the age of the solar system and reflect the 
mostly regular behavior of the outer solar system (Jupiter, 
Saturn, Uranus, Neptune).6 By contrast, the frequencies 
related to the inner planets, (gu g2, g3, §4, Sl, y2, j3> S4) 

un ergo significant variations, with some differences in 
their unstability. They can be put in three classes, depend­
ing their A100 value (Table 4.1): 

1. unstable frequencies: gu g3, g4j Su s2 

2. moderately unstable frequencies: j3> y4 

3. nearly stable frequencies: g2 

This last frequency is of particular interest as it contri-
utes to the g2 - g5 term with a 405-kyr period that is the 

argest term of the eccentricity signal (Table 4.2). Despite 
e c aotic motion of the solar system, this term can thus 

use as a metronome for the time calibration of the 

Indeed, the uncertainty in the solutions grows exponentially 
by a factor of 10 every 10 Myr (Laskar, 1989). More 
recently, it was shown that the motion of the minor planets 

JT 1 uSta ,'S ltSClf Cha0tic' on much sh°rter time 
scales than the planets. Due to the perturbation of these 
celestial bodies on the planets, the possibility for construct­
ing a precise orbital solution for the planets of the solar sys­
tem from their present state is limited to about 60 Myr 
(Laskar et al., 201 lb). Thus the use of the Earth's eccentric- hp a ",IS 

i y so ution as a template for cyclostratigraphy will suffer v 3 metronome for the time calibratii 

Wfl f • 4'3'2 The 405 vft -ft metronome 

and I^m0dP^ludo^rjeLaSkar ^ f' 201 la)' ThC La20'°a ?them405-kPeriOdi! C°mP°nent °f the Earth's eccentriC^ 
including the five major astaoid^rrVerS10ns' with a modek practically cn §t §5 tei™ (Table 4-2)' The value °f 85 'S 

and Bamberga). Their initial conditions'wereott ^'h38' ̂  difftision (TabMn Thi ^ Pr6SentS °"ly Sma" Cha°tiC 
were obtained using matpd h component can thus be approxi-•^^tertby a singie periodic ^ ̂  gjves ^ approximate 

6. A, . rule of tlmt, on. c.™™*".'F,"J,T ^ ""th " "bJt" » fcipiitaijjTT 
of 2, , G„. More „yr . « • M„ „« ̂  6 Mvr 

>r exact'y)- A variation of O.OOI'Vyr will make an offset 



La2004 La2010d 
La2010 a La2011 

time (Ma) 
. .  •  , U „  nnst For clarity, only 2 Myr slices are plotted, every 10 Myr. La2004 

^RE 4-6 Evolution of four eccentricity solutions over 60 My. nto ^ 
kar et al„ 2004), La2010a, La2010d (Laskar et al„ 201 la), and La20 
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eccentricity, including the constant term, expressed m a 
very simple form Laskar et al. (2004) 

^ = 0.027558-0.010739 cos(2434" + 3.200"r). (4.10) 

This expression was established by a fit to La2004, 
but with the improved solutions of Laskar et al. (201 la), 
it appears that there was no need to change this formula­
tion (Fig. 4.7). One needs indeed to remember that 
beyond 60 Ma, as it is obvious from Fig. 4.7, the drift in 
frequencies becomes apparent and cannot be predicted 
only by the celestial mechanics computation. But this 
unknown drift is small and amounts to less than one 
period over 250 Myr (Fig. 4.7), which is about 405-kyr FIGURE 4.7 Differences (in radians) of the argument 0g2~g5(t) 0f 
over 250 Myr(~1.6%c). This is better than most radioiso- in all solutions La2004 (Laskar et al.. moat t .mm.,. . 

topic determinations (e.g., Fig. 1.4 from Gradstein et al., 
2012). Eq. (4.10) can thus be used for cyclostratigraphic 
tuning over the whole Mesozoic and beyond. The stability 
of this 405-kyr term was recently confirmed by precise 
U-Pb zircon dates at 210-215 Ma (Kent et al., 2018). In 
an equivalent way, one can use the following formula, 
expressed in radians 

250 

Lniltciciii-ca lauiana, UIC dlgument t)g2 ~ gS(t) of 
g2-gs in all solutions La2004 (Laskar et al., 2004), La2010a,bcd 
(Laskar et al., 201 la) with respect to the pure single-frequency approxi­
mation 6m(t) = 3.200"r, where t is in year. Adapted from Laskar et al 
(2011a). 

<>405 = 0.027558 - 0.010739 cos 0.0118 + 2;r 
405,000 

(4.11) 
La2004 - • La2010d • La2010a La2011 

where t is in years and counted negatively in the past. 
In Fig. 4.8, 6405 is plotted on selected time intervals 

over 250 Myr. It is compared with the filtered eccentricity 
in the [2.2, 4.3]7year ([301, 589] kyr period) band for 
four recent solutions La2004 (Laskar et al., 2004) 
La2010a, La2010d (Laskar et al., 2011a), and La2011 
(Laskar et al., 2011b). It should be noted that these fil­
tered solutions, as in Fig. 4.5B, include the side terms that 
induce a g4 g3 modulation of the g2 - gs component, 
which is why, even in the most recent time, the amplitude 

the filtered eccentricity does not strictly match the 
purely periodic e405 solution (Eq. 4.10). Beyond 55 Ma 
here is also some phase shift, but this is expected, due to 

the uncertainty of the behavior of the g2-o, mode t r 4 - 7 ] -  h E v , e n  a t  2 5 0  M a ' t h e  
p e n o i  w ° w ~  i  

m""™ ,ln"8rlphlC calto«»» puiposes, it is i„ 
general not recommended to use the 
solutions beyond 40 Ma for i eccentncity 
L t C O i t f i T s " " " . 5 0  M "  t o r  ^ ' 0 .  
Moreover, by tuning to thi' n a aV'°r 'S n0t cons'stent-
to in the ££SCl jT "?**>• °"e 

will not help afterward to discnmî the °°mp°nentS 1,131 

signal embedded in the record f™ r 3stronomical 
introduced in the tuning. It is thus reco T* COmPonent 

a Pure cosine function^ Wnded * « only 
there is no reason to departW^ ' UP t0 n°W' 
frequency (405,000 year period) thm°mPUted 3-200"/*c* 
radioisotopic dating (Kent et al 2018 wt ^ 

" U18)'If the improvement 

§ 0.03 

0.02 

'44/ 248 

FIGURE time <Ma) 

siiicle-fr*v„,o^ 11,6,4®5"lcyr 82 ~ 85 component. In black is plotted ejostl 

coiresn^ ^ Pe"°diC temi Provided hy Eq. (4.10). The colored curv 

2004) La20i°n solutions La2004 (Laskar et a 

20Ub)^h 1 ^°10d <U,tar et 201'«). and La2011 (Laskar e. a 

band and thus incTudL^'^ ™ ** [2'2' ([301' 5891 ̂  a SB 
lades the modulation by the g4 - g3 component (Fig. 4-5B 
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of radioisotopic measures provides more precise time con­
straints in the future, then it will be possible to improve a 
tuning target by providing either a slightly different value 
for the <?405 frequency or even a varying frequency for this 
term (Fu and Laskar, 2019). Such improvement is more 
than welcome, but meanwhile, one should stick to the con­
stant 3.200"/year frequency. By contrast, for ages that are 
within the validity time of the solution, that is 40 Ma for 
La2004 and 50 Ma for La2010 and La2011, one can use the 
full eccentricity solution, as well as the derived filtered 
eccentricity (Fig. 4.5B). 

4.3.3 The g4~g3 2.4 Myr cycle 

The g2 fundamental frequency is the most stable, not con­
sidering the outer planet ones. This led to the recognition 
of the g2 - gs metronome. By contrast, g3 and g4 are the 
most unstable frequencies (Table 4.1). Moreover, we have 
seen the important role of the g4 - g3 2.4 Myr term in the 
eccentricity (Section 4.2.3). g4-g3 is the sixth term in 
amplitude in the eccentricity (Table 4.2) but appears also 
as the main modulation of the g2 - g5 405-kyr term and 
also as the modulation of the ~100-kyr terms in the 
eccentricity (Fig. 4.5). However, this term cannot be used 
for time calibration, as its behavior is not stable, and its 
frequency, as for s4 — s3, will evolve because of the cha­
otic diffusion of the orbits (Fig. 4.9). This modulation has 
been recognized in sedimentary records of the Cenozoic 
and Mesozoic eras (Olsen and Kent, 1999; Palike et al„ 
2004; Boulila et al., 2014; Fang et al„ 2015; Ma et al., 
2017; Westerhold et al., 2017), although in Olsen and 
Kent (1999), the 405-kyr modulation was measured with 
a period of about 1.7 Myr, instead of the present 2.4 Myr 
value. The question arises as to whether this difference 
could be the expression of the chaotic diffusion of the 
solar system, and this was answered positively in Olsen 
et al. (2019). Indeed, in Fig. 4.10, extracted from Olsen 
et al. (2019), the period of the g4 - g3 argument is plotted 
versus time for 13 different orbital solutions. For the most 
recent 40 Myr, they all reveal the same ~2.4 Myr period, 
but then they depart from each other due to chaotic diffu­
sion (Laskar, 1990; Laskar et al., 2004). The green hori­
zontal line represents the 1.7 Myr value observed in the 
Newark—Hartford data (Olsen and Kent, 1999; Olsen 
ct al., 2019). This value is attained by many of the solu­
tions and in particular by La2010d (in black) at roughly 
the same 200 Ma age. It can also be observed that the 
excursion of the Pgi-g3 period is even larger and can 
evolve across the [1.4:2.6 Myr] period range during this 
time interval. 

The prediction of the evolution of the actual path of 
the Pgi-g3 period in the past cannot be retrieved by only 
considering the present planetary positions and computing 
their past orbits using the laws of celestial mechanics. As 

time (Ma) 

FIGURE 4.9 Top: differences (in radians) of the argument of - g3 

in solutions La2004 (Laskar et al., 2004), La20l0a,b,c,d (Laskar et al., 
2011a) with respect to the linear evolution 2.6647", where T is in Myr. 
Bottom: differences (in radians) of the j4-j35 argument in La2004, 
La2010a,b,c,d with respect to the linear expression 2 x 2.6647", where T 
is in Myr. Adapted from Laskar et al., 2011a. 

time (Ma) 

FIGURE 4.10 Evolution of the period of the g4- g3 argument for 
13 orbital solutions over 250 Myr in the past. The horizontal line is the 
1.7 Myr value observed in the Newark-Hartford data. The red curve is 
La2004, and the black curve La2010d. Over the first 40 Myr, all values 
are of ~ 2.4 Myr, but they diverge after 50 Myr due to chaotic diffusion. 
La2010d (black) has nearly the same value as the one found in the 
Newark-Hartford data around the same age (200-220 Ma) (Olsen 
et al., 2019). 

in Olsen et al. (2019), we will have to rely on geological 
data to retrieve this information. Recovering these long-
period cycles in the geological data is in some sense 
recovering the planetary orbital motions through geologi­
cal data beyond their horizon of predictability. 
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4.4 Inclination and obliquity 
The shape of the Earth's orbit, regulated by the eccentric­
ity, is not the only important parameter for the computa­
tion of the insolation on the Earth's surface. The other 
main ingredient is the orientation of the Earth's spin axis 
that is regulated by the obliquity £, the angle between the 
orbital plane of the Earth and its equator, and the preces­
sion angle, ip, that describes the orientation of the spin 
angle in its slow motion around the pole of the orbital 
plane, n (Fig. 4.3). Here we make the approximation that 
the spin axis is also the axis of inertia of the Earth.7 

The precession ip and obliquity e (Fig. 4.3) equations 
for the rigid Earth in the presence of planetary perturba­
tions are given by Kinoshita (1977), Laskar (1986), 
Laskar et al. (1993), Neron De Surgy and Laskar (1997), 
and Laskar et al. (2004) 

dt 1 

dip 

dt 

aX 

L 

X2 
I - jj(B(t) sinip - J4(/) cosip) 

==(J4(t) sinip + 3(t) cos ip) - 2 C(t) 

L J 1 - *  

(4.12) 

with X ~ L cos e, L = C7, where 7 is the spin rate of the 
Earth, A<B<C are the principal momentum of inertia 
of the Earth, and 

J4(/) = 

2«= 
\J 1 — p2 — q2 

C(t) = qp-pq 

VI -P2-q2 

2 

[q+p(qp~pq)\ 

\p~q(qp-pq)\ (4.13) 

where q - sin(i/2) cos U and p = sin(//2) sin 0, and where 
a is the precession constant 

3G 
' 27 

m0 

("ex/EV)' Ed 

(4.14) 
where © refers to the Sun, and M to the Moon. For a fast 
mtatmgplanet such as the Earth, the dynamical ellipticity 

A~B)/C can be considered as proportional 
7 . this corresponds to the hydrostatic equilibrium (e s? 

ambeck, 1980). In this approximation, a is thus propor' 
tonal to LO. The quantities J4(t), B(t), and C(t) are related 

to the secular evolution of the orbital plane of the Earth 
and are grven by the integration of the planetary modons 

r N 
TABLE 4.5 First eight terms (in decreasing amplitude) 
of the frequency decomposition of the Earth's 

k1 1>k ("/year) P (kyr) bk X 104 

1 p + s3 32.026 40.5 49 

2 p + s4 33.144 39.1 19 

3 P + S4 - (g4 _ g3> 32.582 39.8 15 

4 P + Se 24.527 52.8 14 

5 p + s3-(g4-g3) 31.475 41.2 9 

6 p + s2 43.815 29.6 8 

7 32.213 40.2 7 

8 p + s, 45.244 28.6 6 

f = £0 + Er=i i>k cos^f + 9k) with s0 = 0.0275579. Column two is 
the corresponding combination of frequencies, s,- are the fundamental 
frequencies (Table 4.1); p is the precession frequency (p = 50.874357 
year in the center of the considered time interval. 

4.4.1 Simplified expressions 

To understand the main terms that appear in the obliquity 
and precession, it is useful to look for simplified expressions 
of Eq. (4.12). Let us consider the case where there is no dis­
sipation in the rotation speed of the Earth {LO is constant) 
and no planetary perturbations. The elliptical elements are 
thus constant, and PA = 2 = C = 0 in Eq. (4.13). Eq. (4.12) 
reduces then to 

= 0 
dcosc 

~dt 

dip 
— - a cos £0 

i.e. £ = £0 = Cte. 

(4.15) 

The obliquity is then constant, and the precession 
angle 1/; evolves linearly with time at a constant angular 
speed of a cos e0. This is a zero order solution. We can 
go further by reducing (Eq. 4.12) to the first order terms. 
We obtain the solution of order one, 

de 
dt 2(p sin 9 cos ip) = 2Ke(£ exp(i^)). (4.16) 

here ( sin(z/2) exp(ifi) and He denotes the real part of 
e eornp ex number. With the quasiperiodic approximation 

(e.g., Table 4.5 of Laskar et al., 2004) 

N 

< = £  a k t \ t p (i(vkt + <pk)), (4.17) 
*=1 

7. The angle between the Earth's spin axis an<£VV~Z~~7 

8. There ,s here a misprint in Laskar et al. (2004). I, should be'read cos 
e< and not X = cos £. 



Astrochronology Chapter | 4 151 

The first-order solution of the obliquity will be a simi­
lar quasiperiodic function 

N 
Clk^k 

£ = £0 + 22^ —— cos((i/i + p)t + (j)k  + ̂ o) )  (4 
k=\ ^ 

18)  

The terms that appear in the obliquity have thus fre­
quency vk + P. where p is the precession frequency, and 
uk are the frequencies of the inclination variables (k = sin 
(;t/2) exp(iQk) (Fig- 4.3). The amplitude of these terms is 
multiplied by vt/(vk+p). High frequencies are thus 
favored (factor uk). Amplitudes are also divided by 
uk+p, and resonance will occur when vk+p = 0. At 
present, p = 50.475838"/year (Laskar et al., 2004), but 
due to tidal dissipation in the Earth-Moon system, p is 
not constant but evolves in time, as the spin rate of the 
Earth and the Earth—Moon distance evolves. 

4.4.2 Tidal evolution 

The Lunar Laser ranging measurements have taken place 
since the Apollo and Lunokhod mission installed reflectors 
on the Moon nearly 50 years ago, with an accuracy that is 
now less than 2 cm (e.g., Viswanathan et al„ 2018). This 
allows us to monitor the present recession of the Moon, at 
a rate of ~3.8 cm/year (Dickey et al., 1994; Laskar et al., 
2004). Backward integration of the Earth-Moon system 
provides interpolation formulae for the Earth-Moon dis­
tance (aM, in Earth radius), the length of day (LOD, in 
hours), and the precession constant (p, in "/year) as pro­
vided in the La2004 solution (Laskar et al., 2004) 

aM = 60.142611 + 6.1008877- 2.70940772 

+ 1.36677973 - 1.48406274 

LOD = 23.934468 + 7.4321677 - 0.72704672 

+ 0.40957273 - 0.58969274 

p = 50.475838 - 26.3685837 + 21.89086272 

(4.19) 

where 7 is the time from the present (J2000), expressed in 
Gyr and counted negatively in the past (Fig. 4.12). These 
expressions have been established by a fit over 250 Myr 
but can be extrapolated over 500 Myr for a first estimate 
°f the past evolution of these quantities. It should never-
theless be reminded that these expressions cannot be 
extrapolated over the age of the solar system, and the past 
evolution of the Earth—Moon system is still largely 
unknown. If one integrates back the evolution of the 
Earth-Moon system, owing to the present rheology para­
meters of the Earth, one finds that the Moon hits the 

arth at about 1.5 Gyr ago, which is clearly not compati­
ble with our understanding of the origin of the Moon or 
history 0f the Earth (Gerstenkorn, 1969; Walker and 

ahnle, 1986). In order to reconcile this evolution with 

FIGURE 4.11 Spectral analysis of the obliquity e. The spectral analysis is 
performed over the interval [10:20] Ma. The main peaks are recognized as 
p + s,, where .v, is one of the fundamental frequencies of the inclination of the 
orbital plane (Table 4.1). On top, the periods are given in kyr. Two additional 
terms of higher order are given: p + j3 - (g„ - g3) and p + - (g„ - g3) 
(see Table 4.5). Frequencies are expressed in arcsec/yr ("/year): 17 
year = 0.7716 cycle/Myr. 

200 300 
time (Ma) 

500 

FIGURE 4.12 Past evolution of the Earth-Moon distance aM (top, in 
Earth radius RE), of the LOD (middle, in hours), and precession fre­
quency p (bottom, in arcsec/year). These curves are obtained using 
Eq (4.19). which are extrapolated from the La2004 solution over 
250 Myr (Laskar et al., 2004). LOD, Length of day. 
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FIGURE 4.13 Length of day (LOD) evolution due to tidal dissipation in the 
Eaith-Moon system. The dotted red line is the LOD provided by Eq. (4.19) 
(Laskar et al„ 2004). The dotted black line is an empirical fit using a simplified 
tidal model adjusted to the geological data (Walker and Zahnle, 1986; 
Lambeck, 1980; Berger and Loutre. 1994). LOp. Length of day. Compilation 
of various data from I Williams, 2000) and references therein. The 
cyclostratigraphic data are from (Meyers and Malinvemo, 2018). 

the age of the Moon, one needs to assume that the present 
tidal dissipation of the Earth is about three times its past 
averaged value. This is possible, as the present tidal qual­
ity factor Q (~ 11) is largely due to the dissipation in the 
shallow seas and thus subject to change by a large amount 
with the repartition of the continents (by comparison, for 
Mars, Q ~ 90). Moreover, the tidal response of the oceans 
strongly depends on the rotation period of the Earth, and 
resonances may occur that increase the tidal dissipation 
(Webb, 1980, 1982; Auclair-Desrotour et al., 2018) But 
the precise past evolution of the Earth-Moon system will 
require some input from the geological record 

There are numerous estimates of the past rotational state 
of the Earth obtained from various indicators such as 
bivalves corals, stromatolites, or tidal deposits. These 
records have been compiled in several publications (e e 

er^ h198°: Wi"iamS' 2000) (Rg' 413)-11 should nev­
ertheless be stressed that most of these data suffer from laree 
uncertainties that are not always estimated. It is cSv 
needed fat these data or other equivalent data ar^ 
Iyzed using clear, updated, methodologies ' 
A" ™ f"/sl",d >« "lade publicly aiSe 

dissipation is also expressed in o i • 
records by the shortening of the climatI ^ 
arid obliquity periods back in time (Eo 4 ,q.P"XeSS10n 

Berger et al., 1992- Bereer i ^ ^see also 

mate forcing terms have been redded'TheS6 

geological archives and associated dlf 10 Sedlmentary 

Wffl" MeyCrS and Malinvemo 2M8HF While this tidal dissipation effect } g' 4'13)' 
shift of the precession/obliquity cvcle Y66" 3S 3 phaSe 

"°° *S°min8 «« "al r," 

(Lourens et al., 2UU1; z-eeaen et al., ZU14), a shortenin 
of the precession and obliquity periods relative t0 J 
stable eccentricity 405-kyr metronome is observed * 
Paleozoic and Mesozoic datasets (e.g., Wu et al„ 20n'n 

Boulila et al., 2014, 2019). Such datasets from ^ 
Mesozoic and Cenozoic could be used to reconstruct the 
Earth's precession and obliquity periods in a quantitative 
manner, and it is desirable that the analysis of such 
records will be continued in order to improve the knowl 
edge of the past evolution of the Earth-Moon system 

In Fig. 4.13 is also plotted (in red dashed line) ik 
computed variation of the LOD as obtained by Eq. (419) 
(Laskar et al., 2004). It should be stressed that this curve 
has not been fitted to the available geological data 
(Fig. 4.13) but is obtained through the sole use of the 
Lunar Laser ranging data over the past few decades. 

In addition to the variations expressed in Eq. (4.19) 

the tidal dissipation induces an average variation in the 
obliquity itself which can be written as 

£ = 23.270773 + 2.0112957 (4.20) 

where T is in billions of years (Laskar et al., 2004), counted 
negatively in the past. The obliquity was thus smaller going 
back in time (see Fig. 14 from Laskar et al., 2004). This 
formula, obtained through a fit over 250 Myr, could also 
be used over 500 Myr in the past, although as stated earlier, 
large uncertainties remain, which can only be improved by 
constraints provided by the geological record. 

In addition to the tidal dissipation in the Earth-Moon 
system, the variations of the Earth's spin rate and orienta­
tion can result from changes in the momentum of inertia 
of the Earth. These can result from change in the ice bold 
(e.g., Laskar et al., 1993; Levrard and Laskar, 2003) or 
plate tectonics (e.g., Mitrovica et al., 1997; Morrow et al., 
2012). The problem with these effects is that their signa­
ture is not easy to disentangle from that of tidal dissipa­
tion, as they will also manifest themselves by a change in 
the precession rate (e.g., Palike and Shackleton, 2000; 
Lourens et al., 2001). Over Gyr time scales, it may further 
be necessary to take into account the mass loss of the sun 
that will affect also the orbital secular frequencies (e.g-> 
Spalding et al., 2018). 

4.4.3 Obliquity solution 

Due to the dissipation in the Earth-Moon system descrit 
earlier, the analysis of the obliquity solution is complex. I' 
n e v e r t h e l e s s  i n t e r e s t i n g  t o  l o o k  t o  t h e  m a i n  f e a t u r e s  o f 1  

solution over a limited time of 20 Myr, where the dissipah 
^pect is moderate (Fig. 4.14). In Fig. 4.14 the obliquity £ 
Potted, as well as various filtered expressions £1, £2. £-1'' 
ered over respectively [28:38], [23:38], [42:47]"/year. The 

mtertng intervals are dictated by the analysis of the Four 
I * *  o f  1 ) 1 6  o b l i q u i t y  ( F i g .  4 . 1 1 ) .  T h e  e n v e l o p e s  £ \ < 1  
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time (Ma) 

FIGURE 4.14 Obliquity (e) evolution (in degrees) over 20Myr from 
La2004 (Laskar et al., 2004) (top). E\ is the filtered obliquity in the win­
dow [28:38]"/year ((34.1:46.3] kyr periods) (green). In red is plotted the 
envelope £j of eq. e2 is the filtered obliquity in the wider window 
[23:38]"/year ([34.1:56.3] kyr periods) (green). In red is plotted the enve­
lope e2 of e2. is the filtered obliquity in the window (42:47]7year 
([27.6:30.9] kyr periods) (green). In red is plotted the envelope £1 of E\. 
The vertical scale is the same for e, £1, e2 and five times larger for £3. 

and £3 of these filtered obliquity solutions allow to extract the 
most important components of the obliquity. In Fig. 4.15 are 
plotted the Fast Fourier Transform (FFT) analyses of these 
envelopes eu e2, £3, of the filtered obliquities £j, £2. £3- with 
the identification of the main terms. 

As expected, the main term in these envelopes is related 
to the s4 — s$ term, with a period of ~1.2Myr. This term 
results from the beat of the p + s4 and p + S3 obliquity terms 
(Fig. 4.11 and Table 4.5). However, other terms appear as 
well. The term g4 — g3 is also present in the eccentricity solu­
tion with a period of ~2.4 Myr. This term results from both 
the beat of the p + S3 and p + S3— (g4 — S3) terms and the 
P + s4 and p + j4 — (g4 — g3) terms (Fig. 4.11 and Table 4.5). 
Very important, is further the S3 — s^ term, appearing as the 
heat of p + s6 with the main obliquity term p + S3. Finally, 

~ s2 appears as the beat of p + 44 and p + s2. 

The important feature of all these spectral terms is that 
they do not depend on the precession frequency p, but 
only on the orbital solution with secular main frequencies 
gi, Sj. These terms will thus not be affected by the strong 
variations mp (Eq. 4.19 and Fig. 4.12). 

Both s4 - s3 and s3 - s6 are of particular importance: 
the first one because it is at present in resonance with the 
modulation frequency of the eccentricity g4 — g3 

(i4 ~ s3 = 2(g4 — g3)), and the second one because s6 is a 
stable frequency and S3 a moderately stable frequency 
(Section 4.3.1). It is thus possible to use the s3 — incli­
nation term as an additional chronometer for stratigraphic 
tuning, with a period of 173 kyr. 

4.4.4 The 173-kyr s3 -s6 metronome 

The g2 - g5 405-kyr metronome is a fundamental tool for 
establishing local or global time scales (see 
Section 4.3.2), but this signal is not always present. 
Recently, it has been demonstrated that in some cases the 
s3 — S6 173-kyr cycle can also be used as a metronome for 
the calibration of stratigraphic sequences (Boulila et al., 
2018; Charbonnier et al., 2018). This cycle allows to cali­
brate obliquity dominated stratigraphic sequences. 

This s3 - s6 term, present in the modulation of the 
obliquity (Figs. 4.14 and 4.15B), does not depend on the 
precession frequency p and is quite stable in time 
(Fig. 4.16). Only the variation of the orbital plane of the 
Earth is involved. We can call this term the 173-kyr incli­
nation metronome, analogous to the 405-kyr g2~ gs 
eccentricity metronome. The time scale uncertainty asso­
ciated with the inclination metronome is of the order of 
400 kyr over 100 Myr that is about 0.4%. But contrary to 
the eccentricity metronome, the inclination metronome is 
not the largest term present in the obliquity and not even 
in the modulation of the obliquity. It is nevertheless quite 
isolated (Fig. 4.15B) which explains why it can be suc­
cessfully used for stratigraphic calibration (Boulila et al., 
2018; Charbonnier et al., 2018). 

A good approximation for this cycle can be given by 
the following expression 

£i3-^(/)=0.144 cos(404,444" + 7.5"f) (4.21) 

where t is in years, counted negatively in the past. The 
angle is in arcseconds and should usually be converted to 
radians to compute the cosine. The frequency s3 — s6 has 
been rounded to 7.57year, as it is meaningless to use the 
exact expression s3-s6 = 7.497855'7year obtained from 
Table 4.1 due to the variability of S3. Alternatively, one 
can use the same quantity expressed in radians and years 
(counted negatively in the past). 

£,3-36(0 = 0.144 cos(l.961 +2ttj^^goo)• (4.22) 
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4.5 Chaotic diffusion and 
secular resonances 
The present solar system is characterized by the presence 
two main secular resonances (Laskar, 1990, 1992; Lask° 
et al., 1992, 2004. 201 la). This is expressed by a c'omme 
surability relation among the secular main frequencies while 
the corresponding angular argument is oscillating (we say jt 
is in libration, like for the small oscillations of a pendulum) 
and not circulating (like a rigid pendulum with large initial 
velocity). These two resonances are 

and 

: 2(g4 ~ g3) ~ 04 ~ s3) 

tr =  (g 1 ~  g s )  ~ (s 1 - s2). 

(4.23) 

(4.24) 

freq ( /yr)c 

FIGURE 4.15 FFT of the envelopes i,J2i e3 of the filtered obliquities 
e2, £3 from Fig. 4.14. Frequencies are expressed in arcsec/yr ("/year)-

1 /year = 0.7716 cycIe/Myr. 

Both are important in the dynamics of the system, but 
the first one draws particular attention as we have seen 
that the 2.4 Myr g4 - g3 term is the main long-term modu­
lation of the eccentricity (Section 4.3.3). In the same way 
the 1.2 Myr s4 - s3 term is the largest modulation term of 
the obliquity (Fig. 4.14). These long-period cycles have 
been recognized in the geological record (e.g., Olsen and 
Kent, 1999; Shackleton et al., 2000; Zachos et al., 2001; 
Palike et al., 2001, 2004). 

The argument ^ of 9 = 2(g4 - g3) - (s4 - s3) is in libra­
tion in all recent solutions up to nearly 50 Ma (Fig. 4.17), 
which seems to be consistent with the geological record 
(e.g., Palike et al., 2004), But over longer time intervals, it is 
most probable that departure from the 2(g4 - g3) - (s4 - S3) 
occurs, as what is observed in the numerical simulations 
(Fig. 4.18). It should be noted that observing a change in the 

period only is not sufficient to conclude that the sys­
tem exit the 9 resonance, as the two Pg4-g} and PSi-s, peri­
ods can change, but stay in the same 2:1 ratio, 
corresponding to the black line of Fig. 4.18. 

In the recent years, there has been an increasing interest 
search of chaotic transition in the 9 = 2(g4 - g3) - (s4 - ft) 

20 40 60 

time (Ma) 
FIGURE 4.16 Stability of the t _ , 
tion of the argument is compared to^e-T ̂  varia" 
soluuons U2004 (Laskar et al„ 2004) La7n.na 16011 for ** four 

1 (Laskar et al., 2011b) and the • <Laskar « al., 2011a) 
made using initial conditions derived from^r"" La42'm 1,131 has b<*n 
2009; Laskar et al., 2004). 3 fit 10 D[*21 (Folkner et a!" 

40 60 
time (Ma) inIIW ^ivia; 

nant a™,,4 17 „^vo'ut'on (in radians) of the argument ipo °f the ' 
et al 2004)"' ~ ~(i4 ~ft) in a" solutions La2004 (La 

^karetaI (20jl^ 'h'C,d <LaSkar 6' a'" 201Ia)• ̂  
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^54-S3 

FIGURE 4.18 Evolution of the period Pu-,3 of the s4 -s3 argument ver­
sus the period Pgi-g, of g4 - g, for 13 orbital solutions over 250 Myr in the 
past. The vertical line is the 1.7 Myr value observed in the Newark-Hartford 
data. The red curve is La2004 and the black curve is La2010d. The black line 
corresponds to the 2(g4 - g}) - (s4 - s3) resonance. The red line corresponds 
to the (g4 - g3) - (s4 - r3) resonance. The green dot is the origin of all solu­
tions, corresponding to the present date, where all solutions start in the 2 
(g4 - g3) - (r4 - r3) resonance. Adapted from Olsen et al. (2019). 

secular resonance (e.g., Grippo et al., 2004; Huang et al., 
2010; Wu et al., 2013b; Ikeda and Tada, 2014; Fang et al., 
2015; Ma et al., 2017; Gambacorta et al., 2018; Ma et al., 
2019). This search is difficult, as it requires very long 
records of high quality that are not very numerous. Some 
convincing results are nevertheless obtained (e.g., Ma 
et al., 2017), and we can expect that more will follow in 
the near future. 

4.6 Discussion 
Since GTS2004 (Gradstein et al„ 2004) and the astronomi­
cal calibration of the Neogene (Lourens et al., 2004), huge 
progress has been made in the analysis of stratigraphic 
records, and the astronomical solutions are challenged to fol­
low this evolution. Starting from the present initial condi­
tions, despite a highly accurate fit to the most precise 
observational data, gathered from spacecraft orbiting around 
the planets, the astronomical solution is limited to 60 Ma 
(Laskar et al., 2011b) because of its chaotic behavior. 
Meanwhile, recent solutions are valid over about 50 Ma 
(Laskar et al., 2011a). This is not sufficient to address 
the needs for stratigraphic studies that have covered 
the Cenozoic and are now being extended to cover the entire 
Mesozoic. This extension, beyond the 60 Ma limit, is made 
possible by the use of both the 405-kyr g2 ~ 8s eccentricity 

metronome and the 173-kyr s3 - s6 inclination metronome 
(see Sections 4.3.2 and 4.4.4). In order to go beyond the use 
of these pure periodic terms, it will be necessary to extend 
the astronomical solutions, and this will only be made possi­
ble by using the geological record as an input for constrain­
ing the astronomical solution. Encouraging results have been 
obtained in this direction (Olsen et al., 2019; Zeebe and 
Lourens, 2019). In the same way the stratigraphic record 
can be used to constrain the past rotational evolution of the 
Earth (e.g., Meyers and Malinverno, 2018), and it is most 
probable that similar studies will help to decipher the past 
tidal evolution of the Earth—Moon system in the near future. 
The search for chaotic transitions in the 2(g4 - g3) — 
(s4 - s3) secular resonance is a hunt that is shared by many, 
as well as analysis of other very long periodic components. 
But in order to obtain convincing results, the stratigraphic 
community needs to adopt rigorous methods with open 
shared data, processing techniques, and protocols. It will 
be the price to switch from qualitative analysis to quantita­
tive results that can be cross compared and used as input for 
the next generation of astronomical solutions. 
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