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Abstract

The long-term variations of the orbital and rotational parameters
of the Earth are the key ingredients for the insolation forcing in
the Milankovitch theory. This chapter describes the main aspects
of these variations, concentrating on the aspects that are cur-
rently recovered in the stratigraphic record. A special emphasis
is given to the very long periodic terms (> 1 Myr period) that
modulate the astronomical solutions and that are essential for
understanding the chaotic behavior of the solar system.

4.1 Introduction

According to the Milankovitch theory (Milankovitch,
1941), some of the large climatic changes of the past orig-
inate from the variations of the Earth’s orbit and of its
spin axis resulting from the gravitational pull of the other
planets and the Moon. These variations can be traced over
many millions of years (Myr) in the geological sedimen-
tary record, although the mechanisms that transfer the
forcing insolation to the sedimentary variations are not
precisely known. '
The recovery of astronomical signal in stratigraphic
sequences has allowed local or global calibration of the
stratigraphic records, and cyclostratigraphy is now a very
active field of research. After the astronomical calibration of
the Neogene Period (Lourens et al, 2004; Hilgen et al.,
2012), focus turned toward the entire Paleogene Period
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(e.g., Kuiper et al., 2008; Westerhold et al., 2012, 2014,
2015; Boulila et al., 2018), covering the entire Cenozoic Era.

Extending this procedure through the Mesozoic Era and
beyond is difficult, as the solar system motion is chaotic
(Laskar, 1989, 1990). It is thus not possible to retrieve the
precise orbital motion of the planets beyond 60 Ma from
their present state (Laskar et al., 2011b). Nevertheless, the
existence of a stable component in the astronomical forc-
ing, the 405-kyr metronome (e.g., Laskar et al., 2004), has
allowed the continuation of the astronomical calibration of
geologic time deep into the Mesozoic Era and even into
the Paleozoic Era and the Precambrian.

Detailed compilations of currently available cyclostra-
tigraphic records have been summarized recently (e.g.,
Hinnov and Hilgen, 2012; Hinnov, 2018b; Huang, 2018),
and we refer to these. In this chapter, we will focus on the
astronomical solution and especially on the long cycles of
these solutions, with the aim to answer some of the com-
mon questions that arise in the analysis of long sequences
of stratigraphic records.

4.1.1 Historical introduction

During the 18th century the question of the stability of the
solar system was of prime importance, as it was also nec-
essary to decide whether Newton's law properly describes
the motion of the celestial bodies (for details, refer to
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Laskar, 2013). A very important result of this quest was
the derivation of the first long-term models for the solar
system orbital evolution. A first result, of fundamental
importance for cyclostratigraphy is the demonstration, at
first order of the planetary masses, of the invariance of the
semimajor axes of the orbits of the planets (Laplace,
1776). This result is also practically verified in the full,
nonapproximated system of equations, with the major con-
sequence that the orbital period of the Earth does not
change over time. One can thus assume that the length of
the year has practically not changed over the past billion
years.! By contrast, Lagrange and Laplace found that in
the linear approximation of the averaged €quations of
motion, the eccentricity, inclination, and orientation of the
orbits change significantly with time, in a quasiperiodic
manner with frequencies of several tens of kyr to Myr, but
in a way that does not allow for Planetary collisions
(Lagrange, 1778; Laplace, 1775)2 the first full computation

1. The relative loss of the mass of the
deduce that the mass loss of the Sy;
period of the Earth over | Ga.

Sun is of about 9 x 10714,
n induces an increase of 9 x

2. Laplace’s work was largely inspired by Lagrange’s manuscript that wag submitted in 1

/year. Using the conserva
107 AU in the Earth ge

of the long-term motion of the Earth’s orbit is due to
Lagrange at the end of the 18th century (Lagrange, 1783,
1784). Of course, the solution of Lagrange only includes the
planets visible to naked eye (Mercury, Venus, Earth, Mars,
Jupiter, and Saturn), but it already provides a very accurate
representation of the Earth’s orbital motion over the past
million years. In Lagrange’s solution, all the main features
of the variation of the Earth’s orbital elements are present,
but it was only after the work of Agassiz (1840), showing
evidence of past Ice Ages, and the new solution of Le
Verrier, including Uranus (Le Verrier, 1840, 1841, 1856_)
that it was advocated that the variations of the Earth’s orbit
could trigger the large climatic variations of the past (Croll,
1875) (see Hilgen (2010) for more historical details). The
obital solution was upgraded by Stockwell (1873) who
added the contribution of Neptune (Fig, 4,1). This lates
orbital solution was used by Pilgrim (1904) for the compflla'
tion of the variation of the Earth spin axis evolution.

tion of angular momentum and Kepler's third law, one can
mimajor axis and a decrease of only 1.5 hours in the orbital

774 (see Laskar, 2013).




Nevertheless, in his theory of the insolation of the Earth,
Milankovitch (1941) considered that the solution of Le
Verrier (1856) was more reliable and asked his colleague
Miskovi¢ to update Le Verrier’s solution for the new values
of the planetary masses and to use it for the computation of
the orientation of the spin axis of the Earth with respect to
its orbit. After comparison to the solution of Stockwell
(1873) and Pilgrim (1904), Milankovitch decided to limit his
insolation computations to the most recent 600,000 years.

With the use of computers, it was possible to extend
these analytical computations significantly. The solution of
Bretagnon (1974) for the solar system comprises 318 peri-
odic terms, while the secular system of Laskar, 1988 ( 1990)
and Laskar et al. (1993) contains 153,824 terms, including
the averaged contribution of the Moon and general relativity.
Nevertheless, these analytical perturbative methods always
require some truncation in series expansions and thus have
some limitations in precision. With the improvement in com-
puter speed and numerical integration algorithms, it is now
possible to directly integrate the equations of motion, as in
the La2004 solution (Laskar et al., 2004).

When comparing the various solutions that have been
used in stratigraphic astrochronology (Fig. 4.1A), it appears
that although Lagrange solution is somewhat off in the first
500,000 years, it already provides a good measure of the
qualitative behavior of the Earth’s orbital solution. The
other solutions are in quite good agreement over the first
600,000 years but begin to depart from one another after
this date. On the contrary, the semianalytical solution La93
(Laskar, 1988, 1990; Laskar et al., 1993) is a perfect match
to the full numerical solution La2004 (Laskar et al., 2004)
over the most recent 2 Myr and even over the last 10 Myr
(see Laskar et al., 2004). Starting with La93, the orbital
solution can thus be considered as perfectly known over
the past few Myr. The evolution of the precision of the
solutions is particularly striking beyond 1.5 Ma (Fig. 4.1B).
The difference is very large with respect to the solution of
Bretagnon (1974) and Berger (1978) but insignificant with
respect to the more recent La2004.

4.1.2 The astronomical solution

Due to the gravitational interactions of the planets, the
If"al"-h's orbit and spin axis present significant variations in
tme. The orbit precesses slowly on its plane in space
(Fig. 4.2), and the equator precesses around the normal to
the orbit (Fig, 4.3). This slow precession motion of the
Planetary orbits is described by a combination of periodic
modes related to the precession of the perihelions with fun-
damental secular frequencies g; (i =1, 2, ... » 8) and pre-
cession of the orbital planes in space with fundamentz.il
Secular frequencies s; (i = 1, 2, ... , 8) (Table 4.1). In addi-
tion, the eccentricity of the orbit and the inclination with
Tespect to the fixed reference frame oscillates with the same
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perihelion

FIGURE 4.2 The eccentricity e is the ratio of the distance between the
two foci of the ellipse (557) and the major axis of the ellipse (2a). At peri-
helion the Earth—Sun distance is a(1 — e); at aphelion it becomes a(1 + e).
The horizontal line is the direction of the ascending node (Fig. 4.3).

n NP

ecliptic of date

FIGURE 4.3 Earth angular parameters. The instantaneous orbital plane
of the Earth, the ecliptic of date, is referred with respect to a fixed refer-
ence frame [mean ecliptic J2000 in La2004 (Laskar et al., 2004) and invari-
ant plane in La2010 (Laskar et al., 2011a)], with a fixed origin 7, (equinox
J2000 in La2004). The ecliptic of date is defined by the longitude of the
ascending node €2 and the inclination i. The argument of perihelion w is
the angle from the line of node SN to the perihelion and the true anomaly v
the angle from perihelion to the position of the Earth. The equinox of date
~ is the intersection of the equator with the ecliptic of date. The spin axis
of the Earth is directed toward the North Pole (NP) and ¢ is the spin angle.
The obliquity & is the angle from the normal to the ecliptic of date (n) to
the spin axis (NP). The precession angle v describes the motion of the spin
axis of the Earth around n. The longitude of perihelion = is the sum of the
longitude of the node (2 and the argument of perihelion w (w=Q +w). It
should be noted that the two angles, £, w, are not on the same plane.

frequencies. The precessing of the motion of the spin axis
enters an additional frequency, the precession frequency p.

4.2 Eccentricity

The eccentricity of the Earth e is a measure of the shape of
its orbit (Fig. 4.2). At perihelion the Sun—Earth distance
(SE) is a(1 —e) and a(l + e) at aphelion. The insolation on
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i ec/year.
: lar frequencies g; and s; of La2004 and La2010a in arcsec/y
TABLE 4.1 Main secular freq T Period‘(year)
La2010a
L 0.13 231,843
5159 s
£ 2 = 0.019 173,913
7.4
& s 0.20 74,620
17.368 17.368 3
& - 0.20 72,338
17.916 17.916
2 . 0.000030 304,407
4.257452 4.257482 :
E = 0.0010 45,884
g 28.2450 28.2449 :
8 3.087951 3.087946 0.000034 419,696
5 2
g 0.673019 0.673019 0.000015 1,925,646
- : 2
G —-5.59 —5.61 0.15 231,843
7.05 —7.06 0.19 183,830
) =7
53 —18.850 —18.848 0.066 68,753
S4 = 174755 —-17.751 0.064 72,994
0
S5 0
S6 —26.347855 —26.347841 0.000076 49,188
Sz —2.9925259 —2.9925258 0.000025 433,079
Sg —0.691736 —0.691740 0.000010 1,873,547
A1 are the observed variations, in arcsec/year, of the frequencies over 100 Myr (Laskar et al., 2011a). The periods of the secular term are given in the last J
column.
S

the surface of the planet is =1/, where I, is the insola-
tion at 1 AU, and r=SE the Sun—Earth distance, When
averaged over the year, that is, over the orbital period, we
find the average annual insolation

Iy

Iy= ———.

a’y/1—¢?
As the semimajor axis g is constant, /3, depends only
on the eccentricity that varies from 0 to about 0,06 over
10 Ma. The relative variation of /, is thus 1.8 X 1072 that

is very small. By contrast, the ratio of insolation at perihe-
lion versus aphelion is

oT

— e

3. Astronomical unit,

where T is the temperature expressed in Kelvin. Considering
an average temperature of 7= 285 K ( 14.85°C), we obtain
0T=48K for the present eccentricity (e = 0.0167), and
6T =17.1K for e = 0,06, These simple examples are quoted
here to emphasize how the eccentricity can modulate the
seasonal insolation. For more complete models, one can
refer to Paillard ( 1998, 2001) and Bosmans et al. (2014).

4.2.1 Decomposition of the eccentricity

The eccentricity signal is one of the major targets for
Stratigraphic studies, especially for older times, before
the Neogene Period. 1t is thus important to understand
the main Components of the eccentricity signal. The
decomposition of this signal in terms of fundamental fre-
quencies is given in Table 4.2. In this decomposition, all
of the terms are recognized as combinations of the fun-
dflmental secular frequencies (Table 4.1). More pre-
cisely, most terms are differences of two g; except
Ho=82~ g5~ (g4~ g5). Indeed, all combinations of fre-
quencies in the periodic decomposition of the eccentri-
City are of the form K=Y kig; with p=13k =0. This
can be easily understood when one realizes that the
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important variable in the dynamical evolution of the
solar system is not the eccentricity (), but the complex
variable z = e exp(iw), where = Q + w. As shown in
Figs. 4.2 and 4.3, w is the argument of perihelion and
the longitude of the ascending node. This was already
known to Lagrange who set up the proper form for
the computation of the long-term evolution of the solar
System (Lagrange, 1778). This system reduces to a
simple linear system of differential equation with con-
Stant coefficients, which is now classically studied in
the first years of university. In this linear solution, that
we will call the Lagrange—Laplace solution, each vari-
able z; is expressed as a z;= Yr_, axexp(i(g + 0)),
Where N is the number of planets of the considered
System (here N = 8) and g; are the fundamental frequen-
cies. When one considers a more complex model, not
limited to the linear secular approximation, the decom-
Position of z; is more complex (e.g., Laskar et al., 2004),
but the main terms of the solution will still be those
corresponding to the Lagrange—Laplace solution, and a
large understanding can be gained by considering only
these terms,

Let us thus consider the five leading terms of z= ¢ exp iw
the complex eccentricity of the Earth (Table 4.3
eXtracted from Table 4 of Laskar et al., 2004). We can
construct a solution based only on these five terms,

o Z}L, brexp(igit + 6;). As this solution is compf)§ed
of only five periodic terms, the frequency decomposition
Of the eccentricity ¢ = ™) is more straightforward and
1S Provided in Table 4.4. In the first column, k is the index

TABLE 4.2 F:rs:Jl 10 terms '(u.n dec;reasing amplitude) of (TABLE 4.3 The five leading terms in the frequency
mpositi /e
the frec!ufancy e:: tPo lt.on of the Earth’s decomposition of the complex eccentricity variable
eccentricity over the time interval [ - 15, +5] Ma. Z=e exp iw for the Earth over the time interval
k ux("/year) P (kyr) by % 10* [ = 151 +5] Ma (Laskar et al., 2004)
' - B = s (2= 3 brexpligit + 6,)).
> 8- gs 13.652 95 81 n |8 |k |gk("year) by Bk (degree)
3 gi—8 10.456 124 62 1 gs 5 4.257 0.0189 30.7
4 8 =85 13.110 9 53 2 g 2 7.457 0.0163 =1678
- 9.910
5 88 131 45 3 gs 4 17.910 0.0130 140.6
- 0.546 237
6 |&-& ’2 3B 3 4 g |3 [17367 0.0088 ~55.9
7 & —gs 1.326 978 28
- \E5 i 1 5.579 0.0042 77.1

8 88 12325 105 21
9 g -8 —@i—g) | 2.665 486 20
10 |g-g 1.884 688 18
m TR . T ; of the term in the frequency decomposition (by decreasing

e eccentricity e can be expressed as e = &, =1 DpCOS(p t + 7 - (5) -
with ep = 0.0275579. Column two lists the corresp(kJn1ding com;)ina:i:m amphlude) of ¢, and k' the rank of the same term in the
of frequendcies vl;/r;ere gi aLe the ft:ndamental frequencies (Table 4.1). decomposition of the full Earth eccentricity (Tables 2 and
Source: Adapted from Laskar et al. (2004). J 6 from Laskar et al., 2004). It is important to note that all

10 leading terms of the Earth's eccentricity can be
explained by only the first 5 terms of z3. In Section 4.2.3,
we will discuss further the outcome of the decomposition
of Table 4.4 in the observed aspects of the Earth eccen-
tricity solution and their possible manifestations in the
geological data. Before, it is instructive to understand the
mathematical origin of the periodic terms involved in
Table 4.4.

4.2.2 Mathematical intermezzo

Let consider

7=
<

k

arexp(i(git + 0;))
4.1)
z= Zakexp(im)

N
=1
N
k=1
the expression of z=e exp(iw), where the amplitudes
ay are positive real numbers and m; = gif + 6. The
eccentricity e is then e = /zZ, where 7 is the complex

conjugate of z, that is,

N
z= ) agexp(—imy). 42
k=1
We have
Z=e*= Y aaexp(i(m — m)) @3)

= @t + Y ararexpli(me — m)).

We see that the arguments that appear are differences
me—m = (8 — &)t T (6 —6) with frequencies g, — g,
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uency decomposition of €™ =|z")|, when 25

i freq
L ; ing amplitude) of the
rTABLE 4.4 First 13 periodic terms (in dt:cre(::;)n'i : 2)P
is limi the first five linear terms of o)e —
is limited to (" year) P (kyr) b, X 10
: = 3.200 405 (109
1 1 82785 : o _82\
13.653 2
2 2 g-s—gs = = 66\
3 - = 13.110 99 53
4 4 8385
9.910 131 44
5 5 83— 8 - IR |
0.543 2387 35
6 6 8483 ;
g8 1.322 980 25
7 7 1~ 85
8 10 88 1.878 690 21
9 8 84— 8 12.331 105 16
10 12 82t+8:—28s 16.853 77 16
11 18 83t8i—8 8 23.563 55 13
& 9 82-8—8:s— &) 2.657 488 13
13 20 82— 85+ (gs—g3) 3.743 346 13
D=, bl cos( t + ;) with eg = 0.0269. k i the rank of the term by decreasing amplitude ine ) while K’ is the rank of the same term in e
(Table 4.2). Column three is the corresponding combination of frequencies. g; are the fundamental frequencies (Table 4.1).

involving all fundamental frequencies gi. But this is ¢?,

and not e. With ¢ = ", a?, we have
E=e(1+X) (4.4)

with

X=Y" aaexp(i(m, — m))
=y

(4.5)

and thus assuming that X is small with respect to 1, and
expanding up to second order in X,
1

e=ewl+X=e¢ (1 + EX = %Xz + 0(X3)>. (4.6)

Thus X will involve differences of two frequencies
& — & (l%q. 4.5) as terms 1—9 of Table 4.4, but the terms
of the X part will be sums of two differences 7, — .
These will I?e terms of order 4, involving four fundamen-
.tal freqyencnes 8 as terms 10—13 of Table 4.4, Tt is also
Interesting to note that the phase of these terms will be

opposite to the equivalent combination of argy
because of the minus sign in Eq. (4.6). FErcls

(S)No:asr) We can retum to the simple example of ¢©) =
1z, z h&'is onl(); five periodic components. As demop-
strated earlier, ¢® wi]] contain only harmonics of even

order, sum of terms of the form
T g -_— T
Indeed, this is well revealed by the s:) 81 (Table 4.4),

) (Fig. 4.4). For this simple mode]

is thus remarkable that the most important features of the
eccentricity solution of the Earth are provided by the sim-
ple model z* (Table 4.4).

It should be noted that the largest periodic component of
the eccentricity is the 405-kyr term & — gs. This term is fun-
damental in cyclostratigraphy as its period is very stable and
can thus be used as a metronome for the establishment of local
and global time scales (Olsen, 1986; Laskar, 1999; Laskar
et al,, 2004, 2011a: Boulila et al., 2008; Hinnov and Hilgen,
2012; Kent et al., 2018: Hinnov, 2018a; Huang, 2018).

4.2.3 Eccentricity modulations

Due to the importance of the 405-kyr mode (g, — gs), it I8
important to filter the data to retrieve its 405-kyr component.
From Fig. 44, it is clear that the g, — g5 mode does not
oceur in isolation but is surrounded by two nearby peaks,
eomesponding to g, — g — (g, — g,) and g —8s+ (88
(reps. 488 and 346 kyr period). These side terms produce &
modulation of the 405-kyr component e, with frequency
84~ 83 (Fig. 4.5B). As the 84— g3 term also appears in the
eccentricity, the g, — g3 mode can also be directly retrieved
by filtering the eccentricity in the [0:1.1]"/year interval (¢a)
(Fig. 4.54). By superposing e, with the envelope é, of the
405-kyr component €, One can see that e, is almost ident-
cal, although in opposite phase fo é, (Fig. 4.5) (see als0

Laskar et al,, 20114),

The g4~ g, modulation appears also in the high frequency
Ccentricity terms. These main terms apPe

(~100 kyr)
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FIGURE 4.4 Fast fourier transform (FFT) of the La2004 eccentricity solution over 33 Myr (top) and Fourier transform of the solution ¢’ limited to
the five main linear terms of z (Table 4.3). For e, all the terms can be easily identified, and a combination of their corresponding frequencies are
reported in the figure (see also Table 4.4). The periods of the corresponding terms are displayed (in kyr) in the top figure. Frequencies are expressed

in arcsec/year ("/year): 1”/year = 0,7716 cycle/Myr.

(Fig. 44) in two sets: (g3— g2 g —g) and (g3—gs
84 — 8s). These components will both modulate with a g5 — g3
frequency (Fig. 4.5C and D). In this case, the modulation
envelopes é, é, are similar and in phase with g4 — g3 (€,).

We can explain this using our simple 5 term model. Let
us consider the filtered eccentricity e, in the [9.3, 11]"/year
band. We will have

ec = a exp(i(m; — m)) + d'exp(i(mg — m2)), (4.7)
where a, a’ are both positive (Eq. 4.6). Thus
ec = [a+ dexp(i(my — m3))] exp(i(m; — m)),  (4.8)

and as o’ is positive, the slow modulation a exp(i
(m4 — 73) appears with the same phase as ¢,. This is the
same for e; (Fig. 4.5D) and for all order 2 couples
83—8j, g4+—g, as for example, (83— & 8+ 81
Fig. 4.4). Now let us consider the modulation of the
405‘kYr term, e,. This term involves three components
in its simple approximation (Eq. 4.6)

ey = aexp (i(m, — ms)) — b exp(i((my — ms) — (1 = 73)))
= b exp(i((my — 7s) + (4 — m3)))
= exp(i(m; — ms))
X [a— b exp(— i(ms — m3)) — b’ exp(i(ms — ™))}, %
(4.

where a, b, and b’ are positive. We have now a minus sign
before b and &' (—1/8X* in Eq. 4.6). This induces a modula-
tion of e, with frequency g, — g3, but due to these minus
signs, it will be in opposite phase with respect to e,. Indeed,
if instead of the eccentricity, expanded as 1+ 12X — 1/8X*
(Eq. 4.6), we consider a fictitious eccentricity like expression
1 + 1/2X + 1/8X, with the opposite sign in the terms X* of
fourth order,” then the modulation in the 405-kyr band of this
fictitious eccentricity is in phase with g4 — g3,

4.3 Chaos in the solar system

Since the first semianalytical long-term solutions of Laskar
(1988, 1990) and Laskar et al. (1993), it becomes possible
to compute reliable orbital solutions starting from the pres-
ent initial conditions (Section 4.1.1). This was confirmed
later on by direct numerical integrations (Quinn et al., 1991;
Laskar et al., 1992, 2004). It was previously thought that the
progress of computers and of observational techniques
would result in an astronomical solution with higher preci-
sion, so that time validity could be extended steadily both in
the future and in the past as envisioned by Laplace (1812).
But the discovery of the chaoticity of the orbital motion of
the solar system put an end to this hope (Laskar, 1989, 1990).

4. X is of second order in the g; (Eq. 4.5).
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FIGURE 4.5 Filtered eccentricity of the La2010a solution (Laskar
et al., 2011a). The filtered solutions are shifted in order to be plotted on
the same graph. (A) e, is the filtered eccentricity in the [0, 1.1]"/year
(period > 1.18 Myr) band (+0.03) (red). (B) e is filtered in the [2.2,
4.3]"/year ([301, 589] kyr period) band (purple). (C) e, is filtered in the
[9.3, 11]"/year ([139, 118] kyr period) band (—0.03) (green). (D) e, is fil-
tered in the [12.6, 14.5]"/year ([103, 89] kyr period) band (—0.06) (blue).
The upper envelopes of e, e, e, respectively, é, é., é; are plotted in
red. The thin black curve is the (e,) curve, shifted in order to compare to
the envelopes é,, é., é; of ey, e,, €q. (€,) nearly coincide with é,, é; and
is phase opposite to the é,. See the text for discussion. See also Laskar
etal., 2011a.

Indeed, the uncertainty in the solutions rows exponentially,
by a factor of 10 every 10 Myr (Laskar, 1989). More
recently, it was shown that the motion of the minor planets
Ceres and Vesta is itself chaotic, on much shorter time
scales than the planets. Due to the perturbation of these
Felestial bodies on the planets, the possibility for construct-
Ing a precise orbital solution for the planets of the solar Sys-
tem from their present state is limited to about 60 Myr
(Laskar et al., 2011b). Thus the use of the Earth’s eccentric-
ity solution as a template for cyclostratigraphy will suffer
the same limitation, In Fig. 4.6, five eccentricity solutions

including the five major asteroids (Ceres, V; s
and Bamberga). Their Dt s

5. This is not the case for the rotational motion of the Earth w|
6. As a rule of thumb, one can consider that 1"/yr corres
of 2 after 1 Gyr. More precisely, 1”/yr = 0,77 X 1076

hich is subject 1o ti

Ponds to a period of | Myr (1 5
Elodiyede YT (1.296 Myr exac,

a fit to a 1 Myr long high-precision Plﬂnel.ary ephemerig
INPOP (Laskar et al, 2011a). La2010a is adjusteq 0
INPOP08 (Fienga et al., 2009) and La2010d to INPOP(g
(Fienga et al., 2008). As it was realized that INPOPp(yg is
more accurate than INPOPO8 (Fienga et al.,, 2011), La20104
should be preferred to La2010a that is in agreement with the
comparison to the updated version La2011 (Laskar et al,
2011b) that is adjusted to INPOP10a (Fienga et al., 2011),
This was also confirmed through comparison with geologi-
cal data (e.g., Boulila et al., 2012; Westerhold et al., 2012),

4.3.1 Drifting frequencies

Another expression of this chaotic motion is the fact that
the main frequencies of the system (Table 4.1) are not
constant but can drift in a significant way (Laskar, 1990;
Laskar et al., 2004), even if the system is largely conser-
vative, with minor dissipation.’ These variations are sum-
marized in col Ay of Table 4.1 that represents the
variation of the different fundamental frequencies
observed over 100 Myr. As was already described in
Laskar (1990), these variations depend largely on the
involved planets. Indeed, the chaos is not evenly distrib-
uted among the planets. The frequencies related to the
outer solar system (gs, g, 87, 88, S6; 57, Sg) are nearly con-
stant over the age of the solar system and reflect the
mostly regular behavior of the outer solar system (Jupiter,
Saturn, Uranus, Neptune)." By contrast, the frequencies
related to the inner planets, (81, &2, &3, 84, 51, 52, 53, 54)
undergo significant variations, with some differences in
their unstability. They can be put in three classes, depend-
ing their A ;g value (Table 4. 1):

1. unstable frequencies: 81 &3, 84, S1, 52
2. moderately unstable frequencies: s3, s4
3. nearly stable frequencies: g,

This last frequency is of particular interest as it contri-
butes to the g, — g5 term with a 405-kyr period that is the
largest term of the eccentricity signal (Table 4.2). Despite
the chaotic motion of the solar system, this term can thus
be used as a metronome for the time calibration of the
Stratigraphic record in the Mesozoic and beyond.

4.3.2 The 405-kyr 82 — 85 metronome

The main periodic component of the Earth’s eccentricity
1s th?: 405-kyr g, — g5 term (Table 4.2). The value of gs i
practically constant, and &2 presents only small chaotic
diffusion (Table 4.1), This component can thus be approxi-
mated by a single periodic term that gives an approximate

dal dissipation in the Earth—Moon system.
tly). A variation of 0.001"/yr will make an offset
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in a
eccentricity, including the constant term, expressed in
very simple form Laskar et al. (2004)

s =0.027558 — 0.010739 cos(2434" +3.200"). (4. 10)

€40
This expression was established by a fit to LaZIO]OA;.
but with the improved solutions of Laskar et al (20 la :
it appears that there was no need to change this formuha;
tion (Fig. 4.7). One needs indeed Fo remember.l'a
beyond 60 Ma, as it is obvious from Fig. 4.7, the dr{ft in
frequencies becomes apparent and cannot.be predxcte'd
only by the celestial mechanics computation. But this
unknown drift is small and amounts to less than one
period over 250 Myr (Fig. 4.7), which is about 40.5-.kyr
over 250 Myr (~ 1.6%). This is better than most radxolso-
topic determinations (e.g., Fig.1.4 from Gradstelp et a!..
2012). Eq. (4.10) can thus be used for cyclostratigraphic
tuning over the whole Mesozoic and beyond. The stability
of this 405-kyr term was recently confirmed by precise
U—Pb zircon dates at 210—215 Ma (Kent et al., 2018). In
an equivalent way, one can use the following formula,
expressed in radians

1
405,000

eqos = 0.027558 - 0.010739 cos (0.01 18+ 2 ) (4.11)
where 1 is in years and counted negatively in the past.

In Fig. 4.8, e4s is plotted on selected time intervals
over 250 Myr. It is compared with the filtered eccentricity
in the [2.2, 4.3]"/year ([301, 589] kyr period) band for
four recent solutions La2004 (Laskar et al., 2004),
La2010a, La2010d (Laskar et al., 2011a), and La2011
(Laskar et al., 2011b). It should be noted that these fil-
tered solutions, as in Fig, 4.5B, include the side terms that
induce a g, — g5 modulation of the 82 — gs component,
which is why, even in the most recent time, the amplitude
of the filtered eccentricity does not strictly match the
purely periodic e solution (Eq. 4.10). Beyond 55 Ma,
there is also some phase shift, but this is expected, due to
the uncertainty of the behavior of the g, —gs mode
!)eyond 60 Ma (Fig. 4.7). Even at 250 Ma, the phase shift
is less t.han half a period, below the above-quoted ~ 1.6%
uncertainty,

Warning: For strati hic calibrati it is i
gen_e1:al Tot mommen%:g to use x:ogltiurelgoses, = l's.m
solutions beyond 40 Ma for a2004 and 50 Ma for L.a201()

frequency .(405‘000 Year period) thay mputed 3.200"/year

radioisotopic dating (Kent et al, 2018),
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FIGURE 4.7 Differences (in radians) of the argument ng—gs(,, of

g,—gs in all solutions La2004 (Laskar et al., 2004), La2010a,b,c4
(Laskar et al., 2011a) with respect to the pure single-frequency approxi-
mation faos(r) = 3.200"7, where 1 is in year. Adapted from Laskar et al.
(2011a).
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11b) Emioa' La2010d (Laskar et al,, 2011a), and La2011 (Laskar et &
band and solution is filtered in the [2.2, 4.3]'lyear (1301, 589] KyT PEC
thus includes the ion by the g, — g5 component (Fig: 42"




of radioisotopic measures provides more precise time con-
straints in the future, then it will be possible to improve a
tuning target by providing either a slightly different value
for the e4os frequency or even a varying frequency for this
term (Fu and Laskar, 2019). Such improvement is more
than welcome, but meanwhile, one should stick to the con-
stant 3.200"/year frequency. By contrast, for ages that are
within the validity time of the solution, that is 40 Ma for
La2004 and 50 Ma for La2010 and La2011, one can use the
full eccentricity solution, as well as the derived filtered
eccentricity (Fig. 4.5B).

4.3.3 The g4 — g3 2.4 Myr cycle

The g, fundamental frequency is the most stable, not con-
sidering the outer planet ones. This led to the recognition
of the g, — gs metronome. By contrast, g; and g, are the
most unstable frequencies (Table 4.1). Moreover, we have
seen the important role of the g, — g3 2.4 Myr term in the
eccentricity (Section 4.2.3). g, — g3 is the sixth term in
amplitude in the eccentricity (Table 4.2) but appears also
as the main modulation of the g, — gs 405-kyr term and
also as the modulation of the ~ 100-kyr terms in the
eccentricity (Fig. 4.5). However, this term cannot be used
for time calibration, as its behavior is not stable, and its
frequency, as for s, — 53, will evolve because of the cha-
otic diffusion of the orbits (Fig. 4.9). This modulation has
been recognized in sedimentary records of the Cenozoic
and Mesozoic eras (Olsen and Kent, 1999; Pilike et al.,
2004; Boulila et al., 2014; Fang et al., 2015; Ma et al.,
2017; Westerhold et al., 2017), although in Olsen and
Kent (1999), the 405-kyr modulation was measured with
a period of about 1.7 Myr, instead of the present 2.4 Myr
value. The question arises as to whether this difference
could be the expression of the chaotic diffusion of the
solar system, and this was answered positively in Olsen
et al. (2019). Indeed, in Fig. 4.10, extracted from Olsen
et al. (2019), the period of the g4 — g3 argument is plotted
versus time for 13 different orbital solutions. For the most
recent 40 Myr, they all reveal the same ~ 2.4 Myr period,
but then they depart from each other due to chaotic diffu-
sion (Laskar, 1990; Laskar et al., 2004). The green hori-
zontal line represents the 1.7 Myr value observed in the
Newark—Hartford data (Olsen and Kent, 1999; Olsen
et al., 2019). This value is attained by many of the solu-
tions and in particular by La2010d (in black) at roughly
the same 200 Ma age. It can also be observed that the
excursion of the P,,-,, period is even larger and can
evolve across the [1.4:2.6 Myr] period range during this
time interval,

The prediction of the evolution of the actual path of
the Py, .. period in the past cannot be retrieved by 0{11)!
considering the present planetary positions and computing
their past orbits using the laws of celestial mechanics. As
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FIGURE 4.9 Top: differences (in radians) of the argument of g; — g3
in solutions La2004 (Laskar et al., 2004), La2010a,b,c,d (Laskar et al.,
2011a) with respect to the linear evolution 2.6647, where T is in Myr.
Bortom: differences (in radians) of the s; — 535 argument in La2004,
La2010a,b,c,d with respect to the linear expression 2 X 2.6647, where T
is in Myr. Adapted from Laskar et al., 201 1a.
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FIGURE 4.10 Evolution of the period of the g4 — g3 argument for
13 orbital solutions over 250 Myr in the past. The horizontal line is the
1.7 Myr value observed in the Newark—Hartford data. The red curve is
La2004, and the black curve La2010d. Over the first 40 Myr, all values
are of ~2.4 Myr, but they diverge after 50 Myr due to chaotic diffusion.
La2010d (black) has nearly the same value as the one found in the
Newark—Hartford data around the same age (200—220Ma) (Olsen

et al,, 2019).

in Olsen et al. (2019), we will have to rely on geological
data to retrieve this information. Recovering these long-
period cycles in the geological data is in some sense
recovering the planetary orbital motions through geologi-
cal data beyond their horizon of predictability.
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4.4 Inclination and obliquity

The shape of the Earth’s orbit, regulated by the eccentric-
ity, is not the only important parameter for the computa-
tion of the insolation on the Earth's surface. The. othf_:r
main ingredient is the orientation of the Earth’s spin axis
that is regulated by the obliquity &, the angle between the
orbital plane of the Earth and its equator, and the preces-
sion angle, ¢, that describes the orientation of the spin
angle in its slow motion around the pole of the' orbital
plane, n (Fig. 4.3). Here we make the appr0x1mat|70n that
the spin axis is also the axis of inertia of the Earth. .

The precession ¢ and obliquity £ (Fig. 4.3) equations
for the rigid Earth in the presence of planetary perturba-
tions are given by Kinoshita (1977), Laskar (1986),
Laskar et al. (1993), Néron De Surgy and Laskar (1997),
and Laskar et al. (2004)

(51—}: = = %(’B(t) sin?) — A(r) cos))
dp _oX -
dt L

Lx,(ﬂ(t) sint + B(1) cos) — 2C(1)
I = 7

(4.12)

with® X =L cos ¢, L= Cy, where ~ is the spin rate of the
Earth, A<B < C are the principal momentum of inertia
of the Earth, and

®= 2 (4 +P(gp — pg)]
Alr)= plgp -
/l_pz_qz Pq
= 2 : s (4.13)
B(r) = —glgp—
() 1—p2—qz[p q(gp — pg)]

C)=gp—pg

where g = sin(i2) cos Q and p = sin(i/2) sin ©, and where
a is the precession constant

3G m
— o) i My

3
1 - =siniy | [E
7 (a0 v ]""OZ)3 (aM\/ 1 —euz)3 ( ? M) ;

4.14)

wher.e © refers to the Sun, and M to the Moon. For a fast
rotating planet such as the Earth, the dynamical ellipticity
E4=(2C—A—-B)/C can be considered as proportional
to 'yz; this corresponds to the hydrostatic equilibrium (e.g.
I_..ambeck, 1980). In this approximation, o is thus propor-'
tional to w. The quantities A1), B(t), and C () are related
to the secular evolution of the orbital plane of the Earth
and are given by the integration of the Planetary motions,

in axis and its axis of inertia is less than 16

-

TABLE 4.5 First eight terms (in decreasing amplitude)

of the frequency decomposition of the Earth’s

obliquity over the time interval [ — 20, —10] Ma.

k1 vk ("/year) | P(kyr) | by x 104

1 p+s3 32.026 40.5 49
\

2 p+Ss 33.144 39.1 19

3 p+si—(8s—83) 32.582 39.8 15

4 p+Se 24.527 52.8 14

5 p+s3—(gs—g3) | 31.475 41.2 9

6 pts: 43.815 29.6 8

7 32.213 40.2 7

8 p+s 45.244 28.6 6

e=¢g9+ Ypey by cos(uit + 6;) with g5 = 0.0275579. Column two is

the corresponding combination of frequencies. s; are the fundamental

frequencies (Table 4.1); p is the precession frequency (p =50.87435"/

year in the center of the considered time interval. J

4.4.1 Simplified expressions

To understand the main terms that appear in the obliquity
and precession, it is useful to look for simplified expressions
of Eq. (4.12). Let us consider the case where there is no dis-
sipation in the rotation speed of the Earth (w is constant)
and no planetary perturbations. The elliptical elements are
thus constant, and A =B= C=0in Eq. (4.13). Eq. (4.12)
reduces then to

dcose ;

= =0 1Le. =gy =Cte.
dip (4.15)
ar - @cose

The obliquity is then constant, and the precession
angle 1) evolves linearly with time at a constant angular
speed of a cos &. This is a zero order solution. We can
go further by reducing (Eq. 4.12) to the first order terms.
We obtain the solution of order one,

de =1 ;

T 2(p sin 1) — g cos 1) =2Re(C exp(iy)). (4.16)
where ¢ = sin(i2) exp(i€?) and Re denotes the real part of
the complex number. With the quasiperiodic approximation
(e.g., Table 4.5 of Laskar et al,, 2004),

N
s Zakew(i(wt + &), (4.17)
k=1

kar et al, (2004). ItshouldbereadashcrcX=Lcose. and not X = cos ¢




The first-order solution of the obliquity will be g it
lar quasipen'odic function

N
AV
e=e0t2) et p TPt b tey), (418)
k=1

The terms that appear in the obliquity have thus fre-
quency vkt P where p is the precession frequency, and
vy are the frequencies of the inclination variables Cx = sin
(i/2) exp(i€2) (Fig. 4.3). The amplitude of these terms is
multiplied by »/(vx+p). High frequencies are thus
favored (factor ;). Amplitudes are also divided by
v +p, and resonance will occur when v, +p=0. At
present, p = 50.475838"/year (Laskar et al., 2004), but
due to tidal dissipation in the Earth—Moon system, p is
not constant but evolves in time, as the spin rate of the
Earth and the Earth—Moon distance evolves.

4.4.2 Tidal evolution

The Lunar Laser ranging measurements have taken place
since the Apollo and Lunokhod mission installed reflectors
on the Moon nearly 50 years ago, with an accuracy that is
now less than 2 cm (e.g., Viswanathan et al., 2018). This
allows us to monitor the present recession of the Moon, at
a rate of ~3.8 cm/year (Dickey et al., 1994; Laskar et al.,
2004). Backward integration of the Earth—Moon system
provides interpolation formulae for the Earth—Moon dis-
tance (aps, in Earth radius), the length of day (LOD, in
hours), and the precession constant (p, in "/year) as pro-
vided in the La2004 solution (Laskar et al., 2004)

ap = 60.142611 + 6.100887T — 2.709407T>
+ 1.366779T3 — 1.484062T*
LOD = 23.934468 + 7.432167T — 0.727046T*
+0.4095727° — 0.589692T"

p = 50.475838 — 26.368583T + 21.8908627°
(4.19)

where T is the time from the present (J2000), expressed in
Gyr and counted negatively in the past (Fig. 4.12). These
EXpressions have been established by a fit over 250 Myr
but can be extrapolated over 500 Myr for a first estimate
of the past evolution of these quantities. It should never-
theless be reminded that these expressions cannot be
eXlrapolated over the age of the solar system, and the past
evolution of the Earth—Moon system is still largely
unknown. If one integrates back the evolution of the
Earth—Moon system, owing to the present heology para-
meters of the Earth, one finds that the Moon hits the

at about 1.5 Gyr ago, which is clearly not compati-
ble with our understanding of the origin of the Moon or
history of the Earth (Gerstenkorn, 1969; Walker and

e, 1986). In order to reconcile this evolution with
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FIGURE 4.11  Spectral analysis of the obliquity . The spectral analysis is
performed over the interval [10:20] Ma. The main peaks are recognized as
P+ 5;, where s; is one of the fundamental frequencies of the inclination of the
orbital plane (Table 4.1). On top, the periods are given in kyr. Two additional
terms of higher order are given: p+s3— (gs— g3) and p + 55— (gs — g3)
(see Table 4.5). Frequencies are expressed in arcsec/yr (“/year): 17/
year = 07716 cycle/Myr.
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FIGURE 4.12 Past evolution of the Earth—Moon distance ay (top, in
Earth radius Rg), of the LOD (middle, in hours), and precession fre-
quency p (bottom, in arcsec/year). These curves are obtain.ed using
Eq. (4.19), which are extrapolated from the La2004 solution over
250 Myr (Laskar et al., 2004). LOD, Length of day.
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FIGURE 4.13 Length of day (LOD) evolution due to tidal dissipation in the
Earth—Moon system. The dotted red line is the LOD provided by Eq. ({.]9)
(Laskar et al., 2004). The dotted black line is an empirical fit using a simplified
tidal model adjusted to the geological data (Walker and Zahnle, 1986;
Lambeck, 1980; Berger and Loutre, 1994). LOP, Length of day. Compilation
of various data from (Williams, 2000) and references therein. The
cyclostratigraphic data are from (Meyers and Malinverno, 2018).

the age of the Moon, one needs to assume that the present
tidal dissipation of the Earth is about three times its past
averaged value. This is possible, as the present tidal qual-
ity factor Q (~11) is largely due to the dissipation in the
shallow seas and thus subject to change by a large amount
with the repartition of the continents (by comparison, for
Mars, 0~ 90). Moreover, the tidal response of the oceans
strongly depends on the rotation period of the Earth, and
resonances may occur that increase the tidal dissipation
(Webb, 1980, 1982; Auclair-Desrotour et al., 2018). But
the precise past evolution of the Earth—Moon system will
require some input from the geological record.

There are numerous estimates of the past rotational state
of the Earth, obtained from various indicators such as
bivalves, corals, stromatolites, or tidal deposits. These
records have been compiled in several publications (e.g.,
Lambeck, 1980; Williams, 2000) (Fig. 4.13). It should ney-
ertheless be stressed that most of these data suffer from large
uncertainties that are not always estimated, It s certainly
needed that these data or other equivalent data are reang.
lyzed using clear, updated, methodologies, and procedures
All ’;a:iva 1dat§1 sh.ould further be made publicly availabje i

1 ssipation is also ex ressed i opi
records by the shonening of thpe cl?r(ri)atliz greeoclogl'Cal
and obliquity periods back in time (Eq. 4 19)p R
Ber _ - 4.19) (see also

ger et al., 1992; Berger and Loutre, 1994 i
mate forcin : i e clic

‘ g terms have beep recorded in sedim,
geological archives and associated datag )
et al,, 2014; Meyers and My oy 5 Zeeden

i i mverno, 201

Wle this tidal dissipation effect can

(Lourens et al., 2001; Zeec.ienlel 11!...2()]4), a shortepy
of the precession and obliquity periods relative 0 the
stable eccentricity 405-kyr metronome is observeg i
Paleozoic and Mesozoic datasets (e.g., Wu et g] 2013
Boulila et al, 2014, 2019). Such datasets frop g,
Mesozoic and Cenozoic could be used to reconstruct e
Earth’s precession and obliquity periods in a quantitagiye
manner, and it is desirable that the analysis of such
records will be continued in order to improve the know.
edge of the past evolution of the Earth—Moon system,

In Fig. 4.13 is also plotted (in red dashed line) the
computed variation of the LOD as obtained by Eq. (4.19)
(Laskar et al., 2004). It should be stressed that this cyrye
has not been fitted to the available geological data
(Fig. 4.13) but is obtained through the sole use of the
Lunar Laser ranging data over the past few decades,

In addition to the variations expressed in Eq, (4.19),
the tidal dissipation induces an average variation in the
obliquity itself which can be written as

€=23.270773 + 2.011295T (4.20)

where T'is in billions of years (Laskar et al., 2004), counted
negatively in the past. The obliquity was thus smaller going
back in time (see Fig. 14 from Laskar et al., 2004). This
formula, obtained through a fit over 250 Myr, could also
be used over 500 Myr in the past, although as stated earlier,
large uncertainties remain, which can only be improved by
constraints provided by the geological record.

In addition to the tidal dissipation in the Earth—Moon
system, the variations of the Earth’s spin rate and orienta-
tion can result from changes in the momentum of inertia
of the Earth. These can result from change in the ice bold
(e.g., Laskar et al., 1993; Levrard and Laskar, 2003) or
plate tectonics (e.g., Mitrovica et al., 1997; Morrow et al.,
2012). The problem with these effects is that their signs-
ture is not easy to disentangle from that of tidal dissipa-
tion, as they will also manifest themselves by a change 0
the precession rate (e.g., Pilike and Shackleton, 2000;
Lourens et al., 2001). Over Gyr time scales, it may further
be necessary to take into account the mass loss of the sul
that will affect also the orbital secular frequencies (€8
Spalding et al., 2018),

4.4.3 Obliquity solution

Due to the dissipation in the Earth—Moon system des"”bed
earlier, the analysis of the obliquity solution is complex. i
nevertheless interesting to look to the main features °f.

solution over a limited time of 20 Myr, where the disﬁipau‘fe
aspect is moderate (Fig. 4.14). In Fig, 4.14 the obliquity €
Plotted, as well as various filtered expressions €1, €2 €3
e OVST TESpectively [28:38], [23:38], [42:47) fyear. TS

filtering intervals are gictated by the analysis of the F °ugz

spectrum of the obliquity (Fig, 4.11), The envelopes £
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FIGURE 4.14 Obliquity (¢) evolution (in degrees) over 20 Myr from
La2004 (Laskar et al., 2004) (top). &, is the filtered obliquity in the win-
dow [28:38]"/year ([34.1:46.3] kyr periods) (green). In red is plotted the
envelope &; of &;. &, is the filtered obliquity in the wider window
[23:38]"/year ([34.1:56.3] kyr periods) (green). In red is plotted the enve-
lope & of &,. &5 is the filtered obliquity in the window [42:47]"/year
([27.6:30.9] kyr periods) (green). In red is plotted the envelope &; of &;.
The vertical scale is the same for &, &, &, and five times larger for &3.

and &5 of these filtered obliquity solutions allow to extract the
most important components of the obliquity. In Fig. 4.15 are
plotted the Fast Fourier Transform (FFT) analyses of these
envelopes &, &, &3, of the filtered obliquities &, &2, &3, With
the identification of the main terms.

As expected, the main term in these envelopes is related
10 the 54— s5 term, with a period of ~ 1.2 Myr. This term
results from the beat of the p + s4 and p + s3 obliquity terms
(Fig. 4.11 and Table 4.5). However, other terms appear as
well. The term g, — g, is also present in the eccentricity solu-
tion with a period of ~ 2.4 Myr. This term results from both
the beat of the p+s3 and p+ 53— (g4 — &3) terms and the
P+ sqand p+ 5, — (g4 — g3) terms (Fig. 4.11 and Table 4.5).
Very important, is further the s3 — ¢ term, appearing as the
beat of p + s¢ with the main obliquity term p + §3. Finally,
§1= 5, appears as the beat of p + s; and p + 52.
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The important feature of all these spectral terms is that
they do not depend on the precession frequency p, but
only on the orbital solution with secular main frequencies
8, 5i- These terms will thus not be affected by the strong
variations in p (Eq. 4.19 and Fig. 4.12).

Both 54— 53 and s; — 54 are of particular importance:
the first one because it is at present in resonance with the
modulation frequency of the eccentricity g4 — g3
(54— 53=2(g4 — 83)), and the second one because s is a
stable frequency and s; a moderately stable frequency
(Section 4.3.1). It is thus possible to use the s3 — s¢ incli-
nation term as an additional chronometer for stratigraphic
tuning, with a period of 173 kyr.

4.4.4 The 173-kyr s3 — s, metronome

The g, — g5 405-kyr metronome is a fundamental tool for
establishing local or global time scales (see
Section 4.3.2), but this signal is not always present.
Recently, it has been demonstrated that in some cases the
53 — 8¢ 173-kyr cycle can also be used as a metronome for
the calibration of stratigraphic sequences (Boulila et al.,
2018; Charbonnier et al., 2018). This cycle allows to cali-
brate obliquity dominated stratigraphic sequences.

This 53 — s term, present in the modulation of the
obliquity (Figs. 4.14 and 4.15B), does not depend on the
precession frequency p and is quite stable in time
(Fig. 4.16). Only the variation of the orbital plane of the
Earth is involved. We can call this term the 173-kyr incli-
nation metronome, analogous to the 405-kyr g, —gs
eccentricity metronome. The time scale uncertainty asso-
ciated with the inclination metronome is of the order of
400 kyr over 100 Myr that is about 0.4%. But contrary to
the eccentricity metronome, the inclination metronome is
not the largest term present in the obliquity and not even
in the modulation of the obliquity. It is nevertheless quite
isolated (Fig. 4.15B) which explains why it can be suc-
cessfully used for stratigraphic calibration (Boulila et al.,
2018; Charbonnier et al., 2018).

A good approximation for this cycle can be given by
the following expression

£i3-s6(1) = 0.144 cos(404,444" +7.5"1) 4.21)
where 7 is in years, counted negatively in the past. The
angle is in arcseconds and should usually be converted to
radians to compute the cosine. The frequency s3 — s¢ has
been rounded to 7.5"/year, as it is meaningless to use the
exact expression s3 — S = 7.497855"/year obtained from
Table 4.1 due to the variability of s3. Alternatively, one
can use the same quantity expressed in radians and years
(counted negatively in the past).

t

esa-so(f) =0.144 cos(l.%l + 21rm). 4.22)
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4.5 Chaotic diffusion and
secular resonances

The present solar system is characterized by the Presence of
two main secular resonances (Laskar, 1990, 1992 Laskgr
et al., 1992, 2004, 2011a). This is expressed by a commey,
surability relation among the secular main frequencieg while
the corresponding angular argument is oscillating (we say i
is in libration, like for the small oscillations of a pendulu)
and not circulating (like a rigid pendulum with large initia)
velocity). These two resonances are

0=2(gs — g3) — (55 — 53) (4.3

and

g (2155 25)= (S155052)" (4.24)

Both are important in the dynamics of the system, but
the first one draws particular attention as we have seep
that the 2.4 Myr g4 — g5 term is the main long-term mody-
lation of the eccentricity (Section 4.3.3). In the same way
the 1.2 Myr s4 — 53 term is the largest modulation term of
the obliquity (Fig. 4.14). These long-period cycles have
been recognized in the geological record (e.g., Olsen and
Kent, 1999; Shackleton et al., 2000; Zachos et al., 2001:
Pilike et al., 2001, 2004).

The argument ¢ of 6 = 2(g, — 83) — (54 — $3) 18 in libra-
tion in all recent solutions up to nearly 50 Ma (Fig. 4.17),
which seems to be consistent with the geological record
(e.g, Pilike et al., 2004). But over longer time intervals, it i
most probable that departure from the 2(g4 — g3) — (54— %)
occurs, as what is observed in the numerical simulations
(Fig. 4.18). It should be noted that observing a change in the
Py, period only is not sufficient to conclude that the sys-
tem exit the 6 resonance, as the two Pg,—g, and Ps,—; pen
ods can change, but stay in the same 2:1 ratio,
corresponding to the black line of Fig. 4.18.

In the recent years, there has been an increasing interest
search of chaotic transition in the 0 = 2(gs—g3) — (54— 53)

)

o /T
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nant argument g = 285~ g3) — (54— s3) in all solutions La2004

et a]‘. 2m4) and m0108'bx'd (Laskar et al., 2011a). Adapfﬁd fm}"
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FIGURE 4.18 Evolution of the period P, of the s; — s3 argument ver-
sus the period P, ., of g4 — g3 for 13 orbital solutions over 250 Myr in the
past. The vertical line is the 1.7 Myr value observed in the Newark—Hartford
data. The red curve is La2004 and the black curve is La2010d. The black line
corresponds to the 2(g; — g3) — (s4 — s3) resonance. The red line corresponds
to the (g4 — g3) — (ss — s3) resonance. The green dot is the origin of all solu-
tions, corresponding to the present date, where all solutions start in the 2
(g4 — g3) — (55 — 53) resonance. Adapted from Olsen et al. (2019).

secular resonance (e.g., Grippo et al., 2004; Huang et al.,
2010; Wu et al., 2013b; Ikeda and Tada, 2014; Fang et al.,
2015; Ma et al., 2017; Gambacorta et al., 2018; Ma et al.,
2019). This search is difficult, as it requires very long
records of high quality that are not very numerous. Some
convincing results are nevertheless obtained (e.g., Ma
et al., 2017), and we can expect that more will follow in
the near future.

4.6 Discussion

Since GTS2004 (Gradstein et al., 2004) and the astronomi-
cal calibration of the Neogene (Lourens et al., 2004), huge
progress has been made in the analysis of stratigraphic
records, and the astronomical solutions are challenged to fol-
low this evolution. Starting from the present initial condi-
tions, despite a highly accurate fit to the most precise
observational data, gathered from spacecraft orbiting around
the planets, the astronomical solution is limited to 60 Ma
(Laskar et al, 2011b) because of its chaotic behavior.
Meanwhile, recent solutions are valid over about 50 Ma
(Laskar et al., 2011a). This is not sufficient to address
the needs for stratigraphic studies that have covet:ed
the Cenozoic and are now being extended to cover the entire
Mesozoic. This extension, beyond the 60 Ma limit, is made
Possible by the use of both the 405-kyr g2 — &5 eccentricity
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metronome and the 173-kyr s; — s, inclination metronome
(see Sections 4.3.2 and 4.4.4). In order to go beyond the use
of these pure periodic terms, it will be necessary to extend
the astronomical solutions, and this will only be made possi-
!)le by using the geological record as an input for constrain-
ing the astronomical solution. Encouraging results have been
obtained in this direction (Olsen et al., 2019; Zeebe and
Lourens, 2019). In the same way the stratigraphic record
can be used to constrain the past rotational evolution of the
Earth (e.g., Meyers and Malinverno, 2018), and it is most
probable that similar studies will help to decipher the past
tidal evolution of the Earth—Moon system in the near future.
The search for chaotic transitions in the 2(gs— g3)—
(s4 — s3) secular resonance is a hunt that is shared by many,
as well as analysis of other very long periodic components.
But in order to obtain convincing results, the stratigraphic
community needs to adopt rigorous methods with open
shared data, processing techniques, and protocols. It will
be the price to switch from qualitative analysis to quantita-
tive results that can be cross compared and used as input for
the next generation of astronomical solutions.
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