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Motivation

Analysis in R":

o It is concerned with the study of differentiable/smooth functions

f:U—R", U C R" open.

¢ Sometimes already other domains occurred:

- Method of Lagrange multipliers to find local extrema of functions
f : R? = R subject to the condition that (z,y) € ¢g~(0) for

g:R? - R.
- Theorems of Gauf}; Green and Stokes: domains called curves and
surfaces appear.

Such domains are called submanifolds (with or without boundary) in R™.

Plan of the course:

o Generalize the differential and integral calculus from open subsets of
R™ to submanifolds of R™, which leads also naturally to the notion of

abstract manifolds.

¢ Manifolds can be equipped with various geometric structures and as
such they become objects of modern differential geometry:

— Hypersurfaces in R™ inherit from the inner product in R a Rie-
mannian metric. ~» Riemannian submanifolds of R".

— Riemannian manifolds

— Symplectic manifolds
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o Lie Groups

— appear as symmetry groups of geometric structures

— appear in the study of PDEs

Motivation
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Chapter 1

Smooth Manifolds

1.1 Submanifolds of R"

We want to identify a class of jnice’ subsets of R™, which will be called
submanifolds of R™, on which we can develop a differential and integral
calculus as on open subsets of R™.
For m < n consider the inclusion

R™=R™ x {0} =& R" x R"™™ =R". (1.1)

Recalling that differentiability is a local concept, we may consider subsets
of R™ that locally have the form of (1.1).

Definition 1.1. A subset M C R™ admits local m-dimensional triviali-
sations, if for every x € M there exists an open neighbourhood U of x in
R™, an open subset V of R” and a diffeomorphism ¢ : U — V such that

HUNM)=VNR™ CR™ x R"™ = R",

We may also consider graphs of smooth functions g : R™ — R"™™:
gr(g) == {(z,g9(z)) : 2 e R"} C R™ x R"™™ =R". (1.2)
Localising (1.2) yields:

Definition 1.2. A subset M C R" is locally the m-dimensional graph
of a smooth function, if for every x € M there exists an open neighbour-
hood U of z in R™, an m-dimensional subspace W C R", an open subset
V C W and a smooth function ¢ : V' — W+ such that

UNM=gr(g) cWa W =R",
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where W+ = {x € R" : (x,w) = 0 Yw € W} is the orthogonal compliment
of W in R™ with respect to the standard inner product (-, ) : R" x R* — R.

We may also consider zero sets of smooth regular functions. A smooth
function
f:U—=>R*"™ U CR"open,

is called regular at y € U, if the derivative D, f : R" — R"™™ is surjective.
It is called regular, if f is regular at all points of U. Note that if f is
regular at y, then it is so locally around y, since the rank of D, f is locally
constant.

Definition 1.3. A subset M C R”" is locally the m-dimensional zero
set of a regular smooth function, if for every x € M there exists an
open neighbourhood U of x in R™ and smooth function f : U — R"™™ that
is regular at x such that

MNU=f0)={yeU: f(xr) =0}

Yet another nice class of subsets arise as images of open subsets of R™
under immersions into R™:

Definition 1.4. A subset M C R™ admits local m-dimensional parametri-
sations, if for every x € M there exists an open neighbourhood U of z in
R™ an open subset V' C R™ and a smooth map ¢ : V. — U such that

e Dy :R™ — R" is injective for all y € V, and
o 1 induces a homeomorphism onto its image: ¢ : V= M NU = Im(v)).

Theorem 1.5. Assume M C R" is a subset of R™. Then the following are
equivalent:

(a) M admits local m-dimensional trivialisations.
(b) M is locally the m-dimensional zero set of a reqular smooth function.
(¢c) M is locally the m-dimensional graph of a smooth function.

(d) M admits local m-dimensional parametrisations.
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The proof is based on the Inverse Function Theorem, which we recall
now:

Theorem 1.6 (Inverse Function Theorem). Let U C R™ be an open subset,
F:U — R" a smooth map, and x € U. If the derivative D, F : R" — R"
of F' at x is an isomorphism, then there exist open neighbourhoods V of x
and W of F(x) such that F(V) =W and

Fly:V=>W
1s a diffeomorphism.
Proof. See Analysis/Calculus class. Ol
An immediate corollary is:
Corollary 1.7 (Implicit Function Theorem). Assume m < n. Suppose
R xR"™ 5 R"™
is a smooth function with f(0,0) =0 and
02f(0,0) := Do) Flgn-m : R"™™ = R"™™

is an isomorphism. Then there exists locally a unique solution g(x) of
f(z,9(x)) =0 and x — g(z) is smooth.

Proof. Consider F' : R™xR"™™ — R™xR"~" given by F(z,y) = (z, f(x,y)).
Note that F' is smooth, F'(0,0) = (0,0) and

Id,, 0
Dook = ( ) 02f(070)>

is invertible. By Theorem 1.6, F~! exists locally around (0, 0) and is smooth.
By construction of F, the local inverse F~! is of the form F~!(u,v) =
(u, G(u,v)) with G smooth. Hence,

fle,y) =0 < F(z,y) = (z,0)
< (7,y) = F'(z,0) = (z,G(z,0))
— y=G(z,0) = g(z).
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Proof of Theorem 1.5. We start with showing

(a) = (b)

Assumex € M, U,V C R" openand ¢ : U — V a diffeommorphism as
in Definition 1.1. Set f :=7wo¢ : U — R" ™, where w : R™ x R"™™ —
R"™™ is the natural projection. By construction, f~'(0) = UNM and
f is smooth. Moreover,

Dyf = DyymoDyp =mo Dyp: R"=R" — R"™™
is surjective for all y € U.

Assume x € M and f : U — R"™™ as in Definition 1.3. Then
D,f : R" — R"™ is surjective and ker(D,f) =: W C R" an m-
dimensional subspace. Identify R” = W @ W+ and write 2 = w + w'.
Then D, f|y 1 : Wt — R * is an isomorphism. Hence, by Corollary
1.7, there exists open neighbourhoods V' C W and V' € W+ of w
respectively w* and a smooth function ¢ : V' — V’ C W+ such that

MOV xV)=f10)n(V x V') ={(v,g(v));veV}

Assumex € M, U,V C W,and g : V — W+ as in Definition 1.2. Now
consider the map v : V. — W & W+ = R" given by 9(v) = (v, g(v)).
It is smooth and ¥(V) = M NU. Moreover, since my o ¢ = Id, where
mw : W @ W+ — W is the natural projection, 1 is a homeomorphism
onto its image. Also, for Dyt : W — W @& W+ one has

D,(w) = (w, Dygw) = (0,0) <= w =0.

Assume x € M, V C R™ and U C R” open and ¢ : V — U as in
Definition 1.4. Without loss of generality we may assume 0 € V' and
¥(0) = x. Then W := Im(Dy)) C R™ is an m-dimensional subspace
and we identify R” = W @ W+. Now define

OV xWt R
D(v,w) == P(v) + w.

Note that ¢(0,0) = x and with respect to the identification R" =
W @ W+ the derivative of @ at (0,0) has the form

(D 0
D“)’O)@( 0 IdWL)'
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Hence, D@ : W @ W+ — R™ is an isomorphism and, by Theorem
1.6, there exist open subsets V; C V, Vo, € W+ and S C R" with
r € S such that @ : V; x V5, — S is a diffeomorphism. Since 9 :
V — UNM is a homeomorphism, there exists an open subset ScR"
with (V1) = SN M. Set U := UNSNS C R, which is an open
neighbourhood of z by construction, and define

¢:= ()5 :U = o(U):=V.

Then ¢ is a diffeomorphism between the open subsets U C R" and
VCcVixVyCVxWtc R Moreover, if y € M N U, then in
particular y € M N S , which implies that there exists v; € V; such
that ¢ (v1) = y. Since y € S, this shows ¢(y) = (v1,0). Conversely,
if (v1,0) € VAW, then &(vy,0) = ¢(v;) € UN M by definition of ¢.
Hence, p(UNM) =V N W.

Ol

Definition 1.8. Assume 1 < m < n are integers. A subset M C R" is
called a (smooth) submanifold of R" of dimension m, if M satisfies
any of the equivalent conditions in Theorem 1.5.

Note that as a subset of R” a submanifold M C R"™ inherits a topology
from R™, namely the subspace topology:

UcC Misopen <= U=UNM for some open subset U C R".

Remark 1.9.

o If one replaces smooth/C> everywhere by C" for 1 < r < oo or by C*,
one obtains the notion of C"-submanifolds respectively real analytic
submanifolds of R™.

e Similarly, if one replaces R by C and smooth by holomorphic, one
obtains complex submanifolds of C™.

 Replacing C* in Definition 1.1 by C° leads to topological submanifolds
of R™. In this case, not all the definitions 1.1-1.4 are equivalent!

Some trivial examples and natural constructions:
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Example 1.1 (Open subsets). Any open subset U C R" is an n-dimensional
submanifold of R™ and all n-dimensional submanifolds of R™ are of this
form. More generally, any open subset of a submanifold in R” is again a
submanifold (of the same dimension). Note also that of course any open
subset of R™ can be seen as an n-dimensional submanifold of R? via the
standard inclusion R™ < R? for n < d.

Example 1.2 (Products). If M C R" and K C Rf are submanifolds of
dimensions m respectively k of R™ respectively R’, then

M x K C R" x R = R"**
is an m + k dimensional submanifold of R™ x R¢.
Some non-trivial examples:

Example 1.3. Consider R™*! equipped with its standard inner product
{-,-) : R™*t x R™*!1 — R. Then the m-dimensional (unit) sphere

S™i={r e R™: ||z|| = 1} c R™™!

is the prototypical example of an m-dimensional submanifold of R™*!. For
m = 1, one gets the unit circle S' in R%. To see this, note that S™ can be
described globally as the zero set of the smooth function f : R™*\ {0} — R
given by f(z) = (z,z) — 1, i.e. f71(0) = S™. Since for any x € R™\ {0}
and v € R™*! one has

d d
D,fv= %Lﬁ:o(l‘ +tu,x+tv) — 1= £]t:0<x,:1:> + 2t(z,v) + t* (v, v)
= 2(x,v),

the derivative D, f : R™™ — R is surjective by non-degeneracy of (-, ).
Hence, f is regular.

Example 1.4. For fixed positive real integers aq, ..., ;11 € Ry consider
the function

fR™IN{0} = R

k 1172 m+1 fL’Q

f@1 o Tpr) =D % — > -1

2
i1 % g1 %

It is smooth and regular. Hence, f~1(0) := M is an m-dimensional subman-
ifold of R™*!. Depending on k, these submanifolds are m-dimensional
ellipsoids or hyperboloids.
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Example 1.5. Consider C™ = R?™ as real vector space. Then
T :={2€C™: |z| = ... = |z = 1} CR™

is an m-dimensional submanifold of R*™  since f~1(0) = T™, where f :
C™\ {0} — R™ is the smooth regular function given by

f(z1y e zm) = (|21] = 1, ooy |2m| — 1).
Of course, also

T2 S x .. x S'CR*x ... x R? = R*™

m—times m—times

so T™ is an m-dimensional submanifold of R*™ by Examples 1.3 and 1.2. It
is called the m-dimensional torus.

Example 1.6. Consider the vector space Hom(R", R") of linear maps from
R™ to R™. Via a choice of basis of R”,

Hom(R", R") = M,,,,(R) = R",

where M,,«,(R) denotes the vector space of real n x n matrices. Since the
determinant det : M,,«,(R) — R is continuous (polynomial in the eneries of
the matrix), the subset

GL(1,R) = {A € M (R) : det(A) # 0} C Myn(R)

is open and as such an n2-dimensional submanifold of Mun(R) = R"*. Note
that GL(n,R) is also a group with respect to matrix multiplication. It is
called the general linear group.

In fact, det : GL(n,R) :— R is smooth and also regular, since for any
A € GL(n,R) one has

(Dadet)(A) = ih—o det(A +tA)
= (jt|t_0 det((l —i—t)A) = c;lt|t_0(1 —i—t)n det(A) _ ndet(A) £0,

which shows that D4 det : GL(n,R) — R is surjective for all A € GL(n,R).
Hence, also f := det—1 : GL(n,R) :— R is a smooth regular function.
Therefore,

SL(n,R) := f71(0) = {A € GL(n,R) : det A = 1} C M,,x,(R)
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is an (n? — 1)-dimensional submanifold of M, «,(R). Tt is also a group with
respect to matrix multiplication, called the special linear group.
Now consider the map

f:GL(n,R) = M,y (R)
F(A) == AA'—1d

and set
O(n) := f1(0) = {4 € GL(n,R) : AA" =1d}.

Note that f(A)' = f(A). Hence, f has values in the subspace M5, (R) C
M, (R) of symmetric n x n-matrices. The function

n(n+1)
2

f:GL(n,R) > M¥™(R) 2 R

is obviously smooth. To see that it is also regular, note that (A, B) — AB?
is bilinear as a map M,,x,(R) X M5, (R) = M, x,(R). Therefore, for any
A € GL(n,R) and B € M,x,(R), one has DofB = AB" + BA". So, if
A€ O(n) and S € MY (R) is arbitrary, then for B := $SA one has

_1 t Qt t_l t _
DAfoi(%%S +54}%>f§(5 +5) =8,

n(n+1)

which shows that Daf : My, (R) — M5 (R) &2 R 2 is surjective for

any A € O(n). Therefore, the set O(n) of orthogonal n x n-matrices is
n(n—1)

a submanifold of R™ of dimension . It is also closed under matrix
multiplication and hence a group, called the orthogonal group.

For submanifolds of R", we have an obvious notion of defining smooth
maps between them:

Definition 1.10. Suppose M C R" is an m-dimensional submanifold.

e Amap f: M — Rlis smooth, if for every point x € M there exists an
open neighbourhood U of z in R” and a smooth function f : U — R’

such that f|Mﬂ§ = flpni-

« For a k-dimensional submanifold K € R a map f : M — K is
smooth, if it is is smooth as a map M — R’.



