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Motivation

Analysis in Rn:

• It is concerned with the study of di�erentiable/smooth functions

f : U æ Rm, U ™ Rn open.

• Sometimes already other domains occurred:

- Method of Lagrange multipliers to find local extrema of functions
f : R2 æ R subject to the condition that (x, y) œ g≠1(0) for
g : R2 æ R.

- Theorems of Gauß, Green and Stokes: domains called curves and
surfaces appear.

Such domains are called submanifolds (with or without boundary) in Rn.

Plan of the course:

• Generalize the di�erential and integral calculus from open subsets of
Rn to submanifolds of Rn, which leads also naturally to the notion of
abstract manifolds.

• Manifolds can be equipped with various geometric structures and as
such they become objects of modern di�erential geometry:

– Hypersurfaces in Rn inherit from the inner product in Rn a Rie-
mannian metric.  Riemannian submanifolds of Rn.

– Riemannian manifolds
– Symplectic manifolds
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• Lie Groups

– appear as symmetry groups of geometric structures
– appear in the study of PDEs
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Chapter �

Smooth Manifolds

�.� Submanifolds of Rn

We want to identify a class of ,nice’ subsets of Rn, which will be called
submanifolds of Rn, on which we can develop a di�erential and integral
calculus as on open subsets of Rn.

For m Æ n consider the inclusion

Rm = Rm ◊ {0} Òæ Rm ◊ Rn≠m = Rn. (�.�)

Recalling that di�erentiability is a local concept, we may consider subsets
of Rn that locally have the form of (�.�).

Definition �.�. A subset M µ Rn admits local m-dimensional triviali-
sations, if for every x œ M there exists an open neighbourhood U of x in
Rn, an open subset V of Rn and a di�eomorphism „ : U æ V such that

„(U fl M) = V fl Rm µ Rm ◊ Rn≠m = Rn.

We may also consider graphs of smooth functions g : Rm æ Rn≠m:

gr(g) := {(x, g(x)) : x œ Rm} µ Rm ◊ Rn≠m = Rn. (�.�)

Localising (�.�) yields:

Definition �.�. A subset M µ Rn is locally the m-dimensional graph
of a smooth function, if for every x œ M there exists an open neighbour-
hood U of x in Rn, an m-dimensional subspace W µ Rn, an open subset
V µ W and a smooth function g : V æ W ‹ such that

U fl M = gr(g) µ W ü W ‹ = Rn,

�
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where W ‹ = {x œ Rn : Èx, wÍ = 0 ’w œ W} is the orthogonal compliment
of W in Rn with respect to the standard inner product È·, ·Í : Rn ◊Rn æ R.

We may also consider zero sets of smooth regular functions. A smooth
function

f : U æ Rn≠m, U µ Rn open ,

is called regular at y œ U , if the derivative Dyf : Rn æ Rn≠m is surjective.
It is called regular, if f is regular at all points of U . Note that if f is
regular at y, then it is so locally around y, since the rank of Dyf is locally
constant.

Definition �.�. A subset M µ Rn is locally the m-dimensional zero
set of a regular smooth function, if for every x œ M there exists an
open neighbourhood U of x in Rn and smooth function f : U æ Rn≠m that
is regular at x such that

M fl U = f≠1(0) = {y œ U : f(x) = 0}.

Yet another nice class of subsets arise as images of open subsets of Rm

under immersions into Rn:

Definition �.�. A subset M µ Rn admits local m-dimensional parametri-
sations, if for every x œ M there exists an open neighbourhood U of x in
Rn, an open subset V µ Rm and a smooth map Â : V æ U such that

• DyÂ : Rm æ Rn is injective for all y œ V , and

• Â induces a homeomorphism onto its image: Â : V ≥= M fl U = Im(Â).

Theorem �.�. Assume M µ Rn is a subset of Rn. Then the following are
equivalent:

(a) M admits local m-dimensional trivialisations.

(b) M is locally the m-dimensional zero set of a regular smooth function.

(c) M is locally the m-dimensional graph of a smooth function.

(d) M admits local m-dimensional parametrisations.
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The proof is based on the Inverse Function Theorem, which we recall
now:

Theorem �.� (Inverse Function Theorem). Let U µ Rn be an open subset,
F : U æ Rn a smooth map, and x œ U . If the derivative DxF : Rn æ Rn

of F at x is an isomorphism, then there exist open neighbourhoods V of x
and W of F (x) such that F (V ) = W and

F |V : V æ W

is a di�eomorphism.

Proof. See Analysis/Calculus class.

An immediate corollary is:

Corollary �.� (Implicit Function Theorem). Assume m Æ n. Suppose

f : Rm ◊ Rn≠m æ Rn≠m

is a smooth function with f(0, 0) = 0 and

ˆ2f(0, 0) := D(0,0)F |Rn≠m : Rn≠m æ Rn≠m

is an isomorphism. Then there exists locally a unique solution g(x) of
f(x, g(x)) = 0 and x ‘æ g(x) is smooth.

Proof. Consider F : Rm◊Rn≠m æ Rm◊Rn≠m given by F (x, y) = (x, f(x, y)).
Note that F is smooth, F (0, 0) = (0, 0) and

D(0,0)F =
A

Idm 0
ú ˆ2f(0, 0)

B

is invertible. By Theorem �.�, F ≠1 exists locally around (0, 0) and is smooth.
By construction of F , the local inverse F ≠1 is of the form F ≠1(u, v) =
(u, G(u, v)) with G smooth. Hence,

f(x, y) = 0 ≈∆ F (x, y) = (x, 0)
≈∆ (x, y) = F ≠1(x, 0) = (x, G(x, 0))
≈∆ y = G(x, 0) =: g(x).
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Proof of Theorem �.�. We start with showing

(a) =∆ (b) Assume x œ M , U, V µ Rn open and „ : U æ V a di�eommorphism as
in Definition �.�. Set f := fi ¶ „ : U æ Rn≠m, where fi : Rm ◊Rn≠m æ
Rn≠m is the natural projection. By construction, f≠1(0) = U flM and
f is smooth. Moreover,

Dyf = D„(y)fi ¶ Dy„ = fi ¶ Dy„ : Rn ≥= Rn æ Rn≠m

is surjective for all y œ U .

(b) =∆ (c) Assume x œ M and f : U æ Rn≠m as in Definition �.�. Then
Dxf : Rn æ Rn≠m is surjective and ker(Dxf) =: W µ Rn an m-
dimensional subspace. Identify Rn = W ü W ‹ and write x = w + w‹.
Then Dxf |W ‹ : W ‹ æ Rn≠k is an isomorphism. Hence, by Corollary
�.�, there exists open neighbourhoods V µ W and V Õ µ W ‹ of w
respectively w‹ and a smooth function g : V æ V Õ µ W ‹ such that

M fl (V ◊ V Õ) = f≠1(0) fl (V ◊ V Õ) = {(v, g(v)); v œ V }.

(c) =∆ (d) Assume x œ M , U , V µ W , and g : V æ W ‹ as in Definition �.�. Now
consider the map Â : V æ W ü W ‹ = Rn given by Â(v) = (v, g(v)).
It is smooth and Â(V ) = M fl U . Moreover, since fiW ¶ Â = Id, where
fiW : W ü W ‹ æ W is the natural projection, Â is a homeomorphism
onto its image. Also, for DvÂ : W æ W ü W ‹ one has

DvÂ(w) = (w, Dvg w) = (0, 0) ≈∆ w = 0.

(d) =∆ (a) Assume x œ M , V µ Rm and U µ Rn open and Â : V æ U as in
Definition �.�. Without loss of generality we may assume 0 œ V and
Â(0) = x. Then W := Im(D0Â) µ Rn is an m-dimensional subspace
and we identify Rn = W ü W ‹. Now define

Õ : V ◊ W ‹ æ Rn

Õ(v, w) := Â(v) + w.

Note that Õ(0, 0) = x and with respect to the identification Rn =
W ü W ‹ the derivative of Õ at (0, 0) has the form

D(0,0)Õ =
A

D0Â 0
0 IdW ‹

B

.



�.� Submanifolds of Rn �

Hence, D(0,0)Õ : W ü W ‹ æ Rn is an isomorphism and, by Theorem
�.�, there exist open subsets V1 µ V , V2 µ W ‹ and S µ Rn with
x œ S such that Õ : V1 ◊ V2 æ S is a di�eomorphism. Since Â :
V æ U fl M is a homeomorphism, there exists an open subset ÂS µ Rn

with Â(V1) = ÂS fl M . Set ÂU := U fl S fl ÂS µ Rn, which is an open
neighbourhood of x by construction, and define

„ := (Õ≠1)|ÂU : ÂU æ „( ÂU) := ÂV .

Then „ is a di�eomorphism between the open subsets ÂU µ Rn and
ÂV µ V1 ◊ V2 µ V ◊ W ‹ µ Rn. Moreover, if y œ M fl ÂU , then in
particular y œ M fl ÂS, which implies that there exists v1 œ V1 such
that Â(v1) = y. Since y œ S, this shows „(y) = (v1, 0). Conversely,
if (v1, 0) œ ÂV fl W , then Õ(v1, 0) = Â(v1) œ ÂU fl M by definition of Â.
Hence, „( ÂU fl M) = ÂV fl W .

Definition �.�. Assume 1 Æ m Æ n are integers. A subset M µ Rn is
called a (smooth) submanifold of Rn of dimension m, if M satisfies
any of the equivalent conditions in Theorem �.�.

Note that as a subset of Rn a submanifold M µ Rn inherits a topology
from Rn, namely the subspace topology:

U µ M is open ≈∆ U = ÂU fl M for some open subset ÂU µ Rn.

Remark �.�.

• If one replaces smooth/CŒ everywhere by Cr for 1 Æ r < Œ or by CÊ,
one obtains the notion of Cr-submanifolds respectively real analytic
submanifolds of Rn.

• Similarly, if one replaces R by C and smooth by holomorphic, one
obtains complex submanifolds of Cn.

• Replacing CŒ in Definition �.� by C0 leads to topological submanifolds
of Rn. In this case, not all the definitions �.�–�.� are equivalent!

Some trivial examples and natural constructions:
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Example �.� (Open subsets). Any open subset U µ Rn is an n-dimensional
submanifold of Rn and all n-dimensional submanifolds of Rn are of this
form. More generally, any open subset of a submanifold in Rn is again a
submanifold (of the same dimension). Note also that of course any open
subset of Rn can be seen as an n-dimensional submanifold of Rd via the
standard inclusion Rn Òæ Rd for n Æ d.

Example �.� (Products). If M µ Rn and K µ R¸ are submanifolds of
dimensions m respectively k of Rn respectively R¸, then

M ◊ K µ Rn ◊ R¸ = Rn+¸

is an m + k dimensional submanifold of Rn ◊ R¸.

Some non-trivial examples:

Example �.�. Consider Rm+1 equipped with its standard inner product
È·, ·Í : Rm+1 ◊ Rm+1 æ R. Then the m-dimensional (unit) sphere

Sm := {x œ Rm : ||x|| = 1} µ Rm+1

is the prototypical example of an m-dimensional submanifold of Rm+1. For
m = 1, one gets the unit circle S1 in R2. To see this, note that Sm can be
described globally as the zero set of the smooth function f : Rm+1 \{0} æ R
given by f(x) = Èx, xÍ ≠ 1, i.e. f≠1(0) = Sm. Since for any x œ Rm+1 \ {0}
and v œ Rm+1 one has

Dxf v = d

dt
|t=0Èx + tv, x + tvÍ ≠ 1 = d

dt
|t=0Èx, xÍ + 2tÈx, vÍ + t2Èv, vÍ

= 2Èx, vÍ,

the derivative Dxf : Rm+1 æ R is surjective by non-degeneracy of È·, ·Í.
Hence, f is regular.

Example �.�. For fixed positive real integers a1, ..., am+1 œ R>0 consider
the function

f : Rm+1 \ {0} æ R

f(x1, ..., xm+1) :=
kÿ

i=1

x2
i

a2
i

≠
m+1ÿ

i=k+1

x2
i

a2
i

≠ 1.

It is smooth and regular. Hence, f≠1(0) := M is an m-dimensional subman-
ifold of Rm+1. Depending on k, these submanifolds are m-dimensional
ellipsoids or hyperboloids.
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Example �.�. Consider Cm ≥= R2m as real vector space. Then

T m := {z œ Cm : |z1| = ... = |zm| = 1} µ R2m

is an m-dimensional submanifold of R2m, since f≠1(0) = T m, where f :
Cm \ {0} æ Rm is the smooth regular function given by

f(z1, ..., zm) = (|z1| ≠ 1, ..., |zm| ≠ 1).

Of course, also

T m ≥= S1 ◊ ... ◊ S1
¸ ˚˙ ˝

m≠times

µ R2 ◊ ... ◊ R2
¸ ˚˙ ˝

m≠times

= R2m,

so T m is an m-dimensional submanifold of R2m by Examples �.� and �.�. It
is called the m-dimensional torus.

Example �.�. Consider the vector space Hom(Rn,Rn) of linear maps from
Rn to Rn. Via a choice of basis of Rn,

Hom(Rn,Rn) ≥= Mn◊n(R) ≥= Rn2
,

where Mn◊n(R) denotes the vector space of real n ◊ n matrices. Since the
determinant det : Mn◊n(R) æ R is continuous (polynomial in the eneries of
the matrix), the subset

GL(n,R) := {A œ Mn◊n(R) : det(A) ”= 0} µ Mn◊n(R)

is open and as such an n2-dimensional submanifold of Mn◊n(R) ≥= Rn2 . Note
that GL(n,R) is also a group with respect to matrix multiplication. It is
called the general linear group.

In fact, det : GL(n,R) :æ R is smooth and also regular, since for any
A œ GL(n,R) one has

(DA det)(A) = d

dt
|t=0 det(A + tA)

= d

dt
|t=0 det((1 + t)A) = d

dt
|t=0(1 + t)n det(A) = n det(A) ”= 0,

which shows that DA det : GL(n,R) æ R is surjective for all A œ GL(n,R).
Hence, also f := det ≠1 : GL(n,R) :æ R is a smooth regular function.
Therefore,

SL(n,R) := f≠1(0) = {A œ GL(n,R) : det A = 1} µ Mn◊n(R)
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is an (n2 ≠ 1)-dimensional submanifold of Mn◊n(R). It is also a group with
respect to matrix multiplication, called the special linear group.

Now consider the map

f : GL(n,R) æ Mn◊n(R)
f(A) := AAt ≠ Id

and set
O(n) := f≠1(0) = {A œ GL(n,R) : AAt = Id}.

Note that f(A)t = f(A). Hence, f has values in the subspace M sym
n◊n(R) µ

Mn◊n(R) of symmetric n ◊ n-matrices. The function

f : GL(n,R) æ M sym
n◊n(R) ≥= R

n(n+1)
2

is obviously smooth. To see that it is also regular, note that (A, B) ‘æ ABt

is bilinear as a map Mn◊n(R) ◊ Mn◊n(R) æ Mn◊n(R). Therefore, for any
A œ GL(n,R) and B œ Mn◊n(R), one has DAfB = ABt + BAt. So, if
A œ O(n) and S œ M sym

n◊n(R) is arbitrary, then for B := 1
2SA one has

DAfB = 1
2(AAt

¸ ˚˙ ˝
=Id

St + S AAt
¸ ˚˙ ˝
=Id

) = 1
2(St + S) = S,

which shows that DAf : Mn◊n(R) æ M sym
n◊n(R) ≥= R

n(n+1)
2 is surjective for

any A œ O(n). Therefore, the set O(n) of orthogonal n ◊ n-matrices is
a submanifold of Rn2 of dimension n(n≠1)

2 . It is also closed under matrix
multiplication and hence a group, called the orthogonal group.

For submanifolds of Rn, we have an obvious notion of defining smooth
maps between them:

Definition �.��. Suppose M µ Rn is an m-dimensional submanifold.

• A map f : M æ R¸ is smooth, if for every point x œ M there exists an
open neighbourhood ÂU of x in Rn and a smooth function f̃ : ÂU æ R¸

such that f̃ |
MflÂU = f |

MflÂU .

• For a k-dimensional submanifold K µ R¸ a map f : M æ K is
smooth, if it is is smooth as a map M æ R¸.


