HOMEWORK 1 Exercise 1. For the short exact sequence od chain complexes 0 // A∗ f // B∗ g // C∗ // 0 there is a long exact sequence of homology groups . . . // Hn+1(C∗) ∂∗ // Hn(A∗) f∗ // Hn(B∗) g∗ // Hn(C∗) ∂∗ // Hn−1(A∗) // . . . with the connecting homomorphism ∂∗ defined by the prescription ∂∗([c]) = [a], where ∂c = 0, f(a) = ∂b, g(b) = c. (1) Prove the exactness in Hn(A∗). (2) Prove the exactness in Hn(B∗). 1