M8130 Algebraic topology, tutorial 02, 2020 U. 10. 2020 Exercise 1. Show that CPn is a CW-complex. &y^Uyt faff oic/i^t /f#Zf (FT 40 d f**A- .......^rCV. /» Mil ItoviA 1« -1 •= (p2* " fr~%*r ho-t g2*-1 "T/Jv 2^ /?2a*1 v—v-ftH -____ - /P?0 •s. ^ f ^ Jb \j Jb i Ufr u Sb (ft* = ŕ o ju0 = M8130 Algebraic topology, tutorial 02, 2020 U. 10. 2020 Exercise 2. Prove that A := {±,n e N} U {0} as a subspace ofR is not a CW-cornplex. Then show that X := I x {0} U A x I is not a CW-complex either. « e1Rj /c £ N*} u io) G™u" ^ C c A \ tfM 4wti»£ ^fito /U fan. O-uMfi M8130 Algebraic topology, tutorial 02, 2020 14. 10. 2020 Exercise 5. Show that for a short exact sequence O^A^B^C^Oof abelian groups (or more generally modules over a commutative ring) the following are equivalent: (1) There exists p : B —>• A such that pf = idA. (2) There exists q : C —>• B such that gq = idc. (3) There exist p : B —>• A and q : C —>• B such that fp + qg = idg. Another equivalent condition is B = A © C', with (p, g) and f + q being the respective inverse isomorphisms. Prove (1) implies (2) and (3) and (3) implies (1) and (2). The rest is for homework. 0 A A> d fl £ ^° f a, M,^ « ^ f C^irs OA if* ^ —-> ^ —> ^ •--> 2/2 0 A -£> B -•> C ~~>0 = m ftp) ±u)~ f u) °(?- (d. ty— / e B 5 d- r TT 0 Z4- ~ id k. f p* f (j, - *áB / %° (K l\ß i (k fyl - Q/ 0 a, Or (L ~ íAj.oQs q (o i^~<~^ /tum . .n. a b - iáľ M8130 Algebraic topology, tutorial 02, 2020 14. 10. 2020 Exercise 6. Let 0 —> A* A 5* A C* —> 0 be a short exact sequence of chain modules. We have defined the connecting homomorphism <9* : Hn{C) —> Hn-i(A) by the formula <9*[c] = [a], where dc = 0, f(a) = db and g{b) = c. Show that this definition does not depend on a nor b. 0 -> B^i —> 0^ 0 1 ^ I n 3 i Qy I^ oS ► \V I-■y y»-b' 9b, 0b' --r- -*^-w-^™-^- /i r i r n r ^ - ľfftf"! =0^/4* /M 9 Lit] Líj ? L j ^ l u j * * * ^ |.__■—^ . r 1 D/M ^ vi I í ^----^ r -r? W ^-C c/J C - 0 0 -**"\--^\-Ä—»7-9«—«7- --^ Ba 1 - /9 ŕ//, /Aí ^ änn^ jLtw-m, M Q ŕ, jiaA n íkj*a*j\ L Afr^L A>Ať ÁRU/ > M* /M í#) ^ H* í C) > ttk-i LA)