M8130 Algebraic topology, tutorial 06, 2020 16. 11. 2020 Exercise 1. Use Z/2 coefficients to show, that every cts map f: Sn —> Sn satisfying f(—x) = —f(x) has an odd degree. \o->c> mm)-^^i7JÉ c* {wi Vino •r J LO e: 4l'-> trp" 5W ^£ *•? nam l^ŕU Au^Tvj /káAjl 112 foty-^1 1* fa M A-yf ?P* EP1* S" íRPu Tr í) -^ 1í f n A, ~>//n 7-= *>/n í/ > *(Z % *rZ / ^/2'—> a \ id\ q« => trf f L I n n _ 3P/7 A 2h —7 iU^/i-S " As mr^ -t|-^- -#J- ju L u. t/j a//ip *eii**s** x - £fr /((/£>> ÁMKs j/JV-eáC slJbvC flUßf Tju McfCu^ su&Lts M8130 Algebraic topology, tutorial 06, 2020_16. 11. 2020 Exercise 3. Compute the structure of graded algebra H*(Sn x Sn; Z) for n even and n odd. Use the following: If Hn{Y\R) is free finitely generated group for all n and (X,A),Y are CW-complexes, then x: H*(X,A;R)®H*(Y;R) -+ H*(X xY,AxY;R) is an isomorphism of graded rings. v u*- © h& —? mi*, ft* Ct^) © #V/(-7?) A** **** *+'<«f o&mO*^ £\ TM*u : Of li*tr) A'*~f*<- TZ-am**^ H*(r; i) 16 ircťj f) Q, u Oj A č H US fotili V ft 4 ® A A /ä 0* a (Ž) b _-fc*V/V® >) - OL* ß út M8130 Algebraic topology, tutorial 06, 2020 16. 11. 2020 Exercise 4. Prove that there is no multiplication on even dimensional spheres. Multiplication on the sphere Sn is a map m: S" x Sn —> Sn such that there is an element I e Sn satisfying m(x, 1) = x, m(l, x) = x. Hint: compute m*: H*(Sn) ->• H*(Sn x Sn), describe both rings. \jtM& /TtA /uamM>o ft£i/ & tent* 0Hs j&tt&Lc* aw : > —> /HU>L /JhU M-e^ S1 Stotyrte. jC/Í t & /fates 2 s 0 l— —J \ r ŕ —--- -9- M8130 Algebraic topology, tutorial 06, 2020 16. 11. 2020 Exercise 5. Show commutativity of the diagram below. Use five lemma to prove that taking any two fi's iso's, the third // is iso as well. H*(X, A)®H*(Y) H*(X)®H*(Y) LE^S H*(A)®H*(Y) |/' a> H*(X xY,Ax Y) **1 ***** ■H*(X x Y) y H*(A x Y) ^ CO ~~~~^t(-- ^ i (Us fc^^w pc ^ /x)..... 4^ Co A 6> )c T*/ "N ' ~ /i / * /"^ / i frt * -+■ f r** f~\ / ft vT. * / \ - o f>< f+J u p2 loj -t pf ^) u^df^fyj- ■- o