M8130 Algebraic topology, tutorial 07, 2020 25. 11. 2020 Exercise 1. Every simply connected manifold is orientable. ^ C^cd. WA* t ■ C<,<0 "~y *1 1 * (0) -- Hi) JaU K6h lend, U«, (M,K^) $ % all, *Uu. a«/^'»' %&H. * (0 - > III, iiu^f-ey Krxc^iy fry /k aCt & VG tot* qet Gl <£> * (—=$> (00 f)i^?^ Ó w f / M8130 Algebraic topology, tutorial 07, 2020 25. 11. 2020 Exercise 4. Prove that for connected spaces H*(XVY; R) = H*(X; R)®H*(Y; R) as graded rings. paw) = 0Ut ft"**- \ V A a^t 3 «H XvY h* J f \ yen) © iftr) ; —I c (a - f cM) - [ävôi Ávd) i-> 1 L o Q ~o M8130 Algebraic topology, tutorial 07, 2020 25. 11. 2020 Exercise 5. Compute the cohomology rings of CP2 x S6 and CP2 V S6. f-<*ut -^e fMtiono zt,. aac q* UČ ó --. í / l y H" í ^ H; ž) £ (eM-M) ; M ^čjčas L Hoi & j n j [ u* j -t-___- „o Efßßty U* (H ; 2/z) é ír. {/t;Z) m m)r£^*—^--c-^--•-r- ď' R j-.^ íl f f U • "v\ —y, r \ itlis^H-.m) (t) u {^"i^t^íz) -o