M8130 Algebraic topology, tutorial 08, 2020 2. 12. 2020 Define the n-th homotopy group of the space X with the base point x0 as the group of homotopy classes of maps (In,dln) ->■ (X,x0) with the operation given by prescription: t r> } f(2tuh,...,tn) 0• 7ln+1(X,A,X0) 7ln(A,X0) 7ln(X,X0) 7ln(X,A,X0) 7tn_i(A,X0) ->-... Exercise 3. 57jou; £/«e exactness of this sequence in nn(X, A, x0) and nn(A, x0). 9 ~ 0 7 I* n — 1 /I r* r i- A ---- 4r —> j-, é— / '---- —>^ J i _ru ja _l n i /í- ^ i / X * _m m mŕk ""1 NOW /v^- Aw** /O j(IXj0W£> AAfrtP /) ^ í/ň a r /? , ff« 3 7^ -} //V y l f • ^ ' ' ( ' v j V. " ( / ' ' / C' o -f A/ Č0p(*6 1 Ji/ * ■ ť". $r: r \ //NT . A rJjyiöjyr? /.i TT / VL VC-) ^ £ ^^flrf' M8130 Algebraic topology, tutorial 08, 2020 2. 12. 2020 Exercise 4. Show that every fibre bundle is a fibration. , •> -A H(*,t) «* [<*(*(:), t^) As T / ( _L Í ^1_i ---- A&e, <£>čl/ á/ps-s-s -- -■ r i-- ~LĹJJJJJi< ± r--o, í, , s r. M8130 Algebraic topology, tutorial 08, 2020 2. 12. 2020 Exercise 5. Show the structure of the fibre bundle Sr' lPn. its i flu) 2 ft* £° (4>S° ->f(u) * £ M8130 Algebraic topology, tutorial 08, 2020 2. 12. 2020 Exercise 6. Show the structure of the fibre bundle S2n+1 CPn with the fibre S1.