I M8130 Algebraic topology, tutorial 10, 2020 16. 12. 2020 Exercise 1. Show -nk(S°°) = 0 for all k, where S00 is colimSn. Using it show that S00 is homotopy equivalent to a point. I S' 1 ■■ r Q y f *---> s -f*-*w-m- ff f o o -—f*-*9*-j- - -*^- d ^ M8130 Algebraic topology, tutorial 10, 2020 16. 12. 2020 Exercise 2. Compute homotopy groups 0/BLP00. 2/2, -> S"'—:> IF??*"' b 7Tfc CRT) =0 *1 M8130 Algebraic topology, tutorial 10, 2020_16. 12. 2020 Exercise 3. Show that the spaces S2 x RP°° and RP2 have the same homotopy groups but they are not homotopy equivalent. ____i'Ot <_ 2/2—>5 —>^'P2- ^3 ' ^^)^^^)^^^ II//, _t ,, /Aatŕ sééjJSČ- yĽ^A^trs. -T- 1 H" (KriS*; 2/2) - 7/? U * *3 A> TRY** Q*-. M8130 Algebraic topology, tutorial 10, 2020 16. 12. 2020 Exercise 4. Extension lemma: Let (X, A) be a pair of CW-complexes, Y a space with ^n-iiXiVo) = 0 whenever there is a cell of dimension n in X — A. Then every map f:A^-Y can be extended to a map F: X -^Y. i ■1 4/2 /kH/l /Jjw& /• ft Vo ■t- K . Ith. >W le> {i^O ^ i f i \ o F M u S'"* ľ -> r J. r IK ff U tí) = w -*- -r- F : y —> ^ -^Ue^Od f : A- —^ V, M8130 Algebraic topology, tutorial 10, 2020 16. 12. 2020 Exercise 5. Long exact sequence of the fibration (Hopf) S1 —> S3 —> CP1 = S2. ants') K4 CP) & Tto C#) = 2 jco 1?) 4 O pi, A i 3 ^ ' 2 J* iff) —? *2 íe') —&*)—>*, (cO b ŕ i Ír fC3\ - f) Ctí u> J U -mr-™™--f--— -W- üL<, (9k) & ž- 1 \ \ i ' ( * k > 1. lis KTL ^? TP?" ■—5 TR? CoO A £~ It. £ 0/ -0 A^- LES #4.. 0 £ **L?) & IFF) 21Z 2-a*>± (Kl*-) -? jzrt CRT*}&O w I / su z£, M8130 Algebraic topology, tutorial 10, 2020 16. 12. 2020 Exercise 7. Consider the map q: S1xS1xS1 —> S3 defined as a map S1 x S1 x S1 —> D3/S2 where D3 is a small disk in the triple torus which is the identity in the interior of D3 and constant on its complement. Further, consider the Hopf map p: S3 —>• S2 = CP1 (described in Hopf fibration S1 —> S3 —> S2). Compute g* and (pq)* in homotopy groups. Show that pq is not homotopic to a constant map. ^ ^ I Tate cl D2 ^ S' *X% S" Qfoto- AMJl, \qq. jo fuel yW^^^ ^ & C^t/ouu a2) z& ^ o Ir ' * -x / in \\ «/f — - — — — ^7 —'— —' — á y 1--v> £ ,íb -r* - -*-** o- a, fo\ - )P4f JI. (f) = &uUs AU i uj fy v i f ¥ i 'o ([,"*• "(Hv) Tí t™ j -r-- j n /i ■ f yl 1 __0 f"* ~~— /