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Model neural networks are built of model neurons. While real biological neurons exhibit 
extremely complex and rich behavior, neuronal dynamics must be considerably simplified to 
make networks analytically and computafionally tractable. The most complete and realistic 
descriptions of neuronal behavior are based on analytic fits of detailed voltage clamp mea- 
surements of the voltage and time dependence of cell membrane currents. Many different 
membrane currents may be involved and the resulting models can be extremely complex. 
The simplest model of this type, and the one which will be considered here, is the classic 
Hodgkin-Huxley model [1] of the squid giant axon. Even in this case the relative complex- 
ity of the model makes it rather intimidating to imagine studying large networks built from 
Hodgkin-Huxley cells. On the other extreme is the binary, on/off ('McCulloch-Pitts, Little or 
Hopfield) model cell used in most studies of attractor neural networks [2]. The simplicity 
of the binary neuronal model makes extremely detailed studies of network behavior possible 
but leaves much of the biological complexity behind. Clearly a first priority in improving 
the biological accuracy of network modeling is to consider networks built from more realistic 
model neurons. 

Neuronal models falling between the extremes represented by the Hodgkin-Huxley and 
binary, Hopfield-like models do of course exist. Most prominent are the integrate and fire 
models [3] and the FitzHugh-Nagumo model [4]. These were constructed phenomenologically 
to match the basic behavior displayed by the Hodgkin-Huxley model and to a lesser degree by 
real neurons. The absence of a more logical derivation of these models makes it difficult to 
see their exact relationship to more complete descriptions and to understand the nature of the 
approximations which have tacitly been used. Here we will present a step by step reduction 
of the classic Hodgldn-Huxley model based on work done in collaboration with Eve Marder. 
The advantage of this derivation is that it is mathematically explicit and that it provides a 
variety of descriptions of increasing simplicity as more and more simplifying approximations 
are made. 

The starting point of the derivation is the Hodgkin-Huxley model. Through a reduction 
procedure the Hodgkin-Huxley equations are approximated by a system of two first-order 
differential equations. This results in a model similar in spirit to that of FitzHugh and 
Nagumo, but considerably different from it in detail. Our derivation provides missing links 
between the Hodgkin-Huxley description and more phenomenological models while at the 
same time producing a simplified model which is more accurate than the FitzHugh-Nagumo 
model. A reduction similar in some ways to ours has been given previously [5] but our 
methods are both more accurate and more general. 

Once the two-dimensional model has been derived there are two possible approaches for 
further reduction and simplification. One of these leads to either a linear or nonlinear integrate 



and fire model while the other gives rise to a binary model with a time-dependent threshold 
[6,7]. Through our reduction procedure all of the parameters arising in these simplified 
models will be directly obtained from parameters of the original Hodgkin-Huxley description 
and all steps and approximations in the derivation will be explicit. In particular, we will 
arrive at a binary model of the general Hopfield type except that it includes hysteresis and 
a time-dependent threshold factor with dynamics completely determined by the underlying 
Hodgkin-Huxley description. 

This work was supported by Department of Energy Contract DE-AC0276-ER03230, NIH 
Training Grant NIH-T32-HS0792 and NIMH grant NIMH-MH-46742. 

THE HODGKIN-HUXLEY MODEL 

The basic equation governing the dynamics of any neuron with spatially constant mem- 
brane potential V is given by conservation of electric charge, 

C ~ v  = - F  + I (2.1) 
dt 

where C is the cell capacitance, F the membrane current and I the sum of external and 
synaptic currents entering the cell, each per unit of cell membrane area. If the potential is not 
spatially constant an additional Laplacian term enters this equation making the analysis much 
more complicated. We will restrict our attention to the spatially constant or space clamped 
case although our results can be applied to the more general situation as well. The membrane 
capacitance C is typically 1 #Farad per square centimeter. In the Hodgkin-Huxley model 
the membrane current F arises primarily from the conduction of sodium and potassium ions 
through voltage dependent channels in the membrane. In addition, other ionic currents are 
described by an Ohmic leakage contribution. F is a function of V and of three time- and 
voltage-dependent conductance variables m, h and n, 

F ( V ,  rn, h, n)  = gL(V  -- VL) + gKn4(V  -- IRA') + g g : h m a ( V  - VNa) (2.2) 

where gL -- 0.3 mmho/cm 2, gg = 36 mmho/cm ~, gNa = 120 mmho/cm 2, VL = -54.402 mvolt, 
VI~- = -77 mvolt and VNa = 50 mvolt. 

The conductance variables m, h and n are both voltage and time dependent and by 
definition take values between zero and one. They approach asymptotic values ~ (V) ,  h(V) 
and ~(V) with time constants rm(V), rh (V)  and r,~(V) respectively, 

r V d m  d h  r V d n  = n ( V )  - n .  (2.3) 
m( ) W  = - m -- h ,,( )-j-; 

The six functions rm(V), vh(V), r,~(Y), ~ (V) ,  h(V) and ~(V) are given by fairly com- 
plicated formulas which are the result of detailed fits to experimental data. For all three 
variables, 

1 (r~, h, ~) = a(m,h,.) (2.4) 
r(~,h,.) = a(m,h,~) + ~(~,h,.) a(~,h,~) + ~(.~,h,.) 

where 

.I(V + 40) 
c~.~ = c~h = .07 exp[-.OS(V + 65)1 (2.5) 

1 - exp[ - . l (V + 40)] 



. 01(v  + 55) ~= = 4 e x p [ - . 0 5 5 o ( v  + 85)] 
*°  = 1 - e x p [ - . l ( v  + 55)] 

1 
~h = 1 + e x p [ - . l ( v  + 35)] ~= = .125 e x p [ - . 0 1 9 5 ( v  + 65)]. 

Here and in the following we suppress the units in formulas with the understanding that all 
potentials are in mvolts,  all times in msec and all currents in #amps per cm 2. Although the 
Hodgkin-Huxley equations are quite complicated they mix in a rather minimal way. The cell 
potential V is affected by all three of the other dynamic variables ra, h and n. However, m, 
h and n do not directly couple to each other, they only interact through V. This property 
will allow us to approximate the dynamics through the introduction of an auxiliary potential 
variable. 

The functions ~ ,  h, ~ and all three r 's  are plotted in Figure 1. Note that the time constant 
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Figure 1 

which governs the behavior of m is much smaller than those for h and n. Furthermore the 
time constants for h and n are roughly the same over most of the voltage range. These 
properties will be important for our reduction of the model. 

The result of integrating the Hodgkin-Huxley equations are as follows. For I = 0, V 
remains at a resting potential of -65 mvolt. A positive current I of sufficient strength and 
duration will induce a sudden depolarization of the cell to about 50 mvolts followed rapidly 
by a hyperpolarization and then a slower recovery back to the resting level. This is of course 
an action potential. The time course of a typical action potential is shown in Figure 2. Note 
that the rise of the action potential is extremely rapid and that its fall has two parts, an initial 
downward ramp followed by a more rapid drop to a hyperpolarized potential. There is then a 
relatively long recovery back to the resting potential. The sudden rise of the action potential 
is caused by a rapid increase of the variable m which turns on a positive inward sodium 
current. The actionpotential is terminated as the variables h and n adjust more slowly to the 
change in membrane potential. The variable h decreases shutting off the sodium current which 
drove the upward swing of the action potential. At the same time an increase in n initiates a 
positive outward potassium current which hyperpolarizes the cell. The final recovery involves 
the readjustment of h and n back to their resting values. 
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Figure 2 

Three essential features are exhibited by the Hodgkin-Huxley model and these ideally 
should be present in any serious model of neuronal dynamics. They are 1) the action potential 
itself, 2) the refractory period after an action potential during which the slow recovery of the 
potassium and sodium conductance has a drastic impact on electrical properties and 3) the 
ability of the model cell to capacitively integrate incoming current pulses. These last two 
features are essential if a model cell is to react appropriately to synaptic inputs. The reduced 
two-dimensional model we discuss retains all three properties while the integrate and fire or 
binary models involve either some or complete loss of accuracy in describing property 2) or 
3) respectively. 

REDUCTION OF THE HOGDKIN-HUXLEY MODEL 

The Hodgkin-Huxley model involves four time-dependent dynamical variables V, m, 
h and n. The four-dimensional nature of the phase space makes it difficult to visualize 
and intuitively understand the workings of this model. There is a tremendous conceptual 
advantage in reducing the model to two dimensions so that the phase space can be depicted 
in a straightforward manner. We therefore propose a procedure for reducing the number of 
dynamical variables from four to two. We do this in two steps. First, as discussed above the 
time scale associated with changes in m, r,~, is much smaller than those associated with h 
and n. Thus, m will reach its asymptotic value ~ (V)  much more rapidly than other changes 
in the model. If we are willing to give up some of the accuracy of the model over very 
short time scales we can replace m by its asymptotic value ~ ( V )  and ignore the differential 
equation for m entirely writing 

m ~ ~(V)  (3.1) 

and 
F(V,m, h,n) " .F. (3.2) 

The last equivalence signifies that when the symbol F is used below it stands for the function 



F(V,m(V),  h,n). The instantaneous approximation for m reduces the number of dynamic 
variables from four to three. 

It would simplify things considerably if we could also replace h and n by their asymptotic 
values. However, if we did this we would destroy the ability of the model to generate action 
potentials since h and n would terminate the action potential as quickly as rn could initiate 
it. Instead because of their longer time constants, these variables should lag behind, reaching 
their asymptotic values more slowly. This effect can be simulated by introducing an auxiliary 
voltage variable U and replacing h and n by their asymptotic values not at the potential V 
but rather at U. The dynamics of the U variable will cause it to lag behind V but to approach 
it asymptotically. Thus we write, 

h ~ h(U) n ~ ~(U) (3.3) 

so that 
F(V,m, h,n) .~ F(V,m(V),'h(U),-~(U)) - f(V, U). (3.4) 

Again the last equivalence indicates that f refers to the function F(v,-~(V),-h(U),~(U)). 
Because both h and ~ are monotonic functions the replacement of either one of the variables 
h or n by its asymptotic value at U would correspond to a simple change of variables. Indeed 
our reduction procedure is exact in this case. However, because we are replacing both h and 
n by a single variable U the reduction is approximate. In order to minimize the impact 
of this approximation we must choose the variable U carefully. Clearly we want the time 
dependence of U in f to mimic the time-dependence induced into F in the full model by the 
changing values of h and n. Thus, we equate time derivatives of F at constant V in the full 
and reduced models, 

OFdh(Y) Ordn(V) _ (Of  d'h(U) Of d'ff(U)~ dV (3.5) 
Oh dt + ~n -~ \O-h dU +-~n - ~  ] "~" 

We now use the original formulas for dh/dt and dn/dt incorporating the approximations 
h ~ h(U) and n ~ g(U) so that 

dh dn .~ "~( V ) - -~( U ). (3.6) R v )  - R u )   n(v)7; 

Using these result we can solve the equal time-derivative condition for dU/dt in terms of V 
and U. This gives us a reduced two-dimensional version of the Hodgkin-Huxley model, 

C dV 
d---t = - f ( Y ,  U) + I (3.7) 

and 

where 

with 

dU 
dt = g(< U) (3.S) 

A 
g(V, U) = ~ (3.9) 

(3.10) 
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and 
Of dh (~ )  a f  d~(~r) (3.11) 

13=0-~ d---U--+On dU 
where OF/Oh and OF/On are to be evaluated at h = h(U)  and n = ~(U).  Note that when 
U = V, g(V, U) = 0 so U will approach V asymptotically if it can. 

Simulations have shown that this reduced model is a good approximation of the full 
model. The easiest way to envision the dynamics given by Eqs. (3.7)-(3.11) is to plot the 
curves (isoclines) dV/dt = - f  + I = 0 and dU/dt = g = 0 in the U - V plane and to 
indicate the flows of U and V. This is done for I = 0 on the left side of Figure 3 below. 
The straight line corresponds to U = V which makes dU/dt = 0. Along the curved line 
dV/dt = 0. The point V = - 6 5  and U = - 6 5  where these two curves intersect is the resting 
equilibrium point. The arrows indicate the flows toward these two curves. The right side of 
Figure 3 shows dV/dt = 0 isoclines for various positive values of the current I.  The lowest 
curve corresponds to I = 0 and the left-hand portion of the curve rises as I is increased. 
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The model we have derived is, at least in spirit, similar to the FitzHugh-Nagumo model 
[4] which also involves two first-order differential equations. However, it has some essential 
and important differences. In the FitzHugh-Nagumo model g(V,U) is taken to be linear in both 
U and V while f(V, U) is cubic in V and linear in U. The linear form for g is not such a bad 
approximation but the form assumed by FitzHugh and Nagumo for f considerably distorts 
the dynamics. In particular, as shown on the right side of Figure 3 the low voltage section of 
the dV/dt = 0 isocline moves up with positive current I. However, the high voltage portion 
of this curve is almost completely insensitive to external current. In the FitzHugh-Nagumo 
model the entire dV/dt = 0 isocline moves up by the same amount as a function of I and this 
causes some fairly severe misrepresentations of cell behavior. For example, the amplitude of 
the action potentials in the full Hodgkin-Huxley model and in our reduced model decrease 



-25 

U .5o, 

when the cell is pushed to a high firing rate by large injected current. In the FitzHugh-Nagumo 
model the amplitude is fairly independent of firing frequency. Furthermore no direct relation 
between parameters of the FitzHugh-Nagumo model and the underlying Hodgkin-Huxley 
model exists. 

To indicate the behavior of the two-dimensional model we first consider the response of 
the system to constant positive current. Figure 4 shows the phase plane for zero current 
(lower curve) and for a positive current large enough to cause repetitive firing (I=10). The 
circular point on the lower curve is the resting point of the cell with zero current. This stable 
equilibrium lies at the point where the two isoclines shown intersect. When positive current 
is applied the low-voltage portion of the dV/dt = 0 isocline moves up until the intersection 
of the two isoclines falls well within the portion of the dV/dt = 0 isocline with positive 
slope. This point is unstable so the system goes into a limit cycle as shown by the arrows in 
Figure 4. This produces a train of action potentials. 
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Another way to exhibit the dynamics of the reduced model is to subject a model cell 
which is initially at the resting potential V = -65  and U = -65  to (square) current pulses 
of various amplitudes and durations. Figures 5 and 6 show responses to such pulses. Along 
with the dV/dt = 0 and dU/dt = 0 isoclines, the phase-space trajectory is shown with data 
points marked at equal time intervals and arrows indicating the sense of the motion. The 
initial line of data points in all the figures shown indicates the behavior of V and U during 
the application of the current pulse while the curved trajectories give the subsequent response. 
The left side of Figure 5 shows the effect of a small pulse of current. This causes an upward 
shift in V that is insufficient to move V out of the region where dV/dt < 0 (compare with 
Figure 3). As a result V moves back down to its resting value and no action potential is 
fired. The loop in the return trajectory indicates that the U variable has also responded to the 
current pulse although this response is less dramatic than that for V. The right side of Figure 
5 shows the effects of a stronger current pulse which is nevertheless still too weak to produce 
an action potential. Here, the dynamics of the U variable plays an essential role in preventing 
the firing of an action potential. Note that the current pulse is sufficiently strong to move V 



12 

into the region to the right of the dV/dt = 0 isocline where dV/dt > 0. However, no action 
potential results because the increase in the U variable causes the trajectory to curve back 
into the region where dV/dt < O. 
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Figure 6 shows the effects of a current pulse sufficiently strong to produce an action 
potential. Here, V is pushed far enough into the unstable dV/dt > 0 region so that it climbs 
all the way up to the high-voltage portion of the dV/dt = 0 isocline. The initial trajectory is 
shown at left and the complete loop from the resting potential, through the action potential 
and back to the resting potential again is shown at right. It is interesting to note that the 
phase plane trajectory stays quite close to the dV/dt = 0 isocline except initially near the 
resting potential. 
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FURTHER REDUCTION OF THE MODEL 

We will now show how the two-dimensional model can be further reduced to yield some 
even simpler models. Clearly with two differential equations in the model an obvious sim- 
plification is to ignore either one or the other. The differential equation for V reflects the 
capacitive properties of the cell, as the presence of the capacitance C would suggest. The 
differential equation for U on the other hand reproduces the time dependence of the membrane 
conductance. The capacitive behavior reflected in the V equation is responsible for the inte- 
grative behavior of the cell while the time-dependent conductances given by the U equation 
produce the refractory period. Thus, to proceed we must be willing to give up an accurate 
description of one or the other of these two essential features. As we will see, integrate and 
fire models ignore the U equation and must incorporate refractoriness in an ad hoc and crude 
manner. Binary models on the other hand ignore the V equation and thus do not simulate the 
integrative and time-delay behavior which capacitance provides. Nevertheless, each of these 
models rather accurately reproduces the remaining dynamics and thus provides an extremely 
useful if partial description of neuronal behavior. 

A standard procedure for reducing a set~ of two nonlinear equations like (3.7)-(3.11) (if 
such a reduction is in fact possible) is to treat one of the variables as instantaneous. For 
example if dV/dt is much greater than dU/dt the V variable will rapidly move to a value 
which makes dV/dt = 0 and the longer time scale dynamics of the system will be governed 
by the constraint dV/dt = - f  + I = 0 and the slower behavior given by the differential 
equation for U. Indeed this is the case through most of the dynamic range of V and U. This 
is evident in Figure 6 where we noted that the phase-space trajectory stays quite close the 
dV/dt = 0 isocline throughout the action potential. In fact throughout most of the phase 
plane If[ > >  tgt, so that V is constrained to stay close to the dV/d~ = 0 isocline most of the 
time. However, to accurately predict the firing pattern of a cell we are most interested in what 
happens near the resting potential and firing threshold and here the situation is more complex. 
Figure 7 shows -f(V, -65) and g(V, -65) in the relevant region of V. In this region f and 
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g are of comparable magnitude. Below the resting potential the magnitude of f tends to be 
bigger. Thus in this region V can be considered instantaneous and the dynamics is determined 
by the isocline constraint - f  + I = 0 and the equation for dU/dt. However for potentials 
slightly above the resting potential f is actually smaller the g. This region is essential for 
triggering an action potential and we see that ignoring the capacitive effects incorporated in 
the equation for dV/dt here would be a mistake. A reduction of the two differential equations 
involves a trade-off. If the region between the resting potential and the firing threshold is of 
most interest then the V dynamics dominates. This is the approach taken by integrate and 
fire models as we discuss next. The approximation dV/dt = - f  + I = 0 which removes 
V as an independent dynamical variable leaving only the differential equation for U is valid 
throughout most of the range of V except in the threshold region. This approximation gives 
rise to the binary models. 

INTEGRATE AND FIRE MODELS 

Integrate and fire models can approximately duplicate the capacitive behavior of a cell, but 
they treat the refractory properties very roughly at best. To derive an integrate and fire model 
from the reduced model of the last section we ignore the dynamics of the U variable. This 
is essentially a large C approximation of Eqs. (3.7)-(3.11). Since the time-dependence of the 
membrane conductance is not reproduced adequately the model cannot itself produce action 
potentials. Rather it is assumed that when the membrane potential exceeds some threshold 
value the result is the firing of an action potential. Likewise, since the U dynamics is ignored 
no refractory period arises in the model but this is sometimes included crudely by specifying 
that the V dynamics freezes for a certain time period following an action potential. 

The elimination of the dynamics of the U variable can be done in two different ways. 
First we can set U = V permanently making dU/dt = 0. The remaining dynamics is then 

just C dV 
dt = - f (V,  V) + I. (5.1) 

As can be seen from the left side of Figure 8 f(V, V) is roughly linear and this further 
approximation is often made. The result is the linear integrate and fire model. To write it we 
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re-express V as 

so that 

v = , - 6 5  ( 5 . 2 )  

c d v  v 
dt = - -R  + Z (5.3) 

where by fitting the curve f (V,  V) we find R = 0.8 kOhm-cm 2. 
The approximation U = V is actually a pretty terrible one to make. As can be seen in 

the phase-space curves for the two-dimensional model, U is never very close to V except at 
the resting value of -65. A more sensible approximation is to set U = -65 and leave it there. 
Then, V is governed by the equation 

ceV dt = - f ( V ,  -65)  + I. (5.4) 

The curve f(V, -65)  is given in the right side of Figure 8. This curve is quite far from linear, 
in particular it passes through zero twice. The higher value of V for which f = 0 defines 
the threshold potential since for all higher potentials up to the peak of the action potential 
dV/dt > 0. Fitting this curve in the relevant region gives a nonlinear integrate and fire model 
again written in terms of v, 

C dv = -.250v + .083v 2 + .008v 3 + I (5.5) 
dt 

with Vthrcshold = 2.5. Note that the parameters for both these integrate and fire models are 
given directly by the underlying Hodgkin-Huxley model through the reduction procedure and 
simple curve fitting. 

BINARY MODELS 

As discussed above the membrane potential V tends to stay quite close to the dV/dt = 0 
isocline most of the time throughout most of the phase space. Thus, another approach to 
further reduction is to assume that the neuron has small enough capacitance C so that the 
differential equation for V can be replaced with the constraint equation 

f (V,  U) = I. (6.1) 

In other words, we assume that the capacitance is small enough so that changes of V caused 
by changes in the current I and in U can be approximated as instantaneous. We can then 
solve the constraint equation for V as a function of U. The resulting values of V versus U 
are plotted at the left in Figure 9. Note that V is a multi-valued function of U. To correctly 
define the inverse we can introduce a binary variable S which keeps track of which branch 
of the curve is being used. In Figure 9 an upper region given by S = +1 and a lower 
region given by S = - 1  are indicated. For this figure I = 0. The correspondence between 
this S variable and the binary variable in Hopfield-type models should be obvious. ,.q = +1 
when the membrane potential takes high values characteristic of an action potential while 
S = - 1  when the cell is not firing and near its resting potential. The region between those 
indicated by S = +1 and S = - 1  does not need to be considered because V will never 
enter this region. As the arrows indicate V will jump instantaneously between the S = 4-1 
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regions. This is an instantaneous approximation to the beginning and end (specifically the 
second rapidly dropping part of the end) of an action potential and is a result of our ignoring 
the cell capacitance. Since these processes are extremely rapid this is actually quite a good 
approximation. 
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From the curve shown on the left side of Figure 9, V can be eliminated in favor of S and 
U. Then dU/dt depends on U and S rather than on U and V. This is shown as the hatched 
line in the right-hand panel of Figure 9. Also shown by solid lines in this figure are linear fits 
to dU/dt in the regions S = +1 and S = - 1  which are used to further simplify the model. 
As can be seen these linear fits are quite good. A non-zero current can be included by noting 
that for S = +1 current has no appreciable impact while for S = - 1  it effectively shifts the 
U variable (see the right side of Figure 3). In particular we find that to a good approximation 

dU 
d't" = - . 3 ( U  + 65 - .61) (6.2) 

for S = - 1  and 
dU 

- 1 . 3 U -  5O (6 .3)  
dt 

for S = +1. The worst part of this approximation is the fact that the differential equation for 
U is linear in I when in fact the response becomes nonlinear if the current is too large. 

The final binary model involves two equations, one to maintain the value of the S variable 
and the other a differential equation for U obtained by combining the two equations for dU/dt 
given above. We will keep track of S by demanding that it flip from -1 to +1 when U goes 
through the value -66 from above and from +1 to -1 when U passes through -43 from below. 
To simplify the final formulas we make the change of variables 

U = 11.5u - 65 i = .03• (6.4) 

Then the binary model is given by 

S = sign[S + .9 - u + (I - S)i] (6.5) 
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with 
du 

-- (.8 + .5S)u + 1.5(1 + S) + .3(1 - S)i (6.6) dt 
The equation (6.5) is similar to that of a binary, Hopfield model with three important 

extra properties. 1) The presence of the S variable in the sign function provides hysteresis. 
2) The u variable acts as a time-dependent threshold determined by the differential equation 
(6.6). 3) The current i only couples when S = -1 .  The addition of these three features lifts 
the binary model to a level where it is accurately reflecting the underlying dynamics of the 
full Hodgkin-Huxley model except of course that capacitive effects are not included. The 
additional complications introduced to achieve this are really quite minimal. In particular 
the differential equation for u is linear so it can be solved easily and analytic results can be 
obtained. A model similar to (6.5) and (6.6) has been studied extensively [7]. It is possible to 
derive analytic expressions for firing rates, phase response curves, firing delays, phase locking 
regions and many other responses of the cell to constant and time varying external currents. 

A discrete time version of the model can be generated by turning Eq. (6.5) into a dynamic 
map and by integrating Eq. (6.6) over one time step At, 

S(t  + At) = sign[S(t) + .9 - u(t) + (1 - S(t))i(t)] (6.7) 

with 

where 

u(t + At) = ~ + (~(t) - ~) exp[- ( .8  + .5s(t))zxt] (6.8) 

= 1.5(1 + S(t)) + .3(1 - S(t))i( t)  
.8 + .5S(t) (6.9) 

Systems of binary model cells can be constructed by using the standard expression 

1 ~ Jj(Sj + 1) i=~__ (6.10) 

for the synaptic current where the sum is over other cells coupled to the neuron being studied 
and the Jj are synaptic weights. This has also been done in a related model [7]. 

CONCLUSIONS 

Following a well-defined reduction procedure we have constructed three types of reduced 
models. The two-dimensional model incorporates both the effects of cell capacitance and of 
time-dependent membrane conductances and so is the most accurate of the three. Integrate 
and fire models can be derived only at the expense of weakening the treatment of time- 
dependent conductances and most importantly refractoriness. Nevertheless these provide quite 
a good description near the resting and threshold potentials. By ignoring cell capacitance we 
obtained an interesting binary model which incorporates quite accurately aspects of the time- 
dependent conductances through hysteresis and through a time-dependent threshold factor. 
An addition difference between this derived binary model and those more commonly in use 
is that synaptic current only couples to the model cell when it is in the non-firing S = - 1  
state. In all three cases, parameters of the reduced models were obtained directly from the 
underlying full Hodgkin-Huxley model. An advantage of our reduction approach is that it 
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allows us to include the effects of other membrane currents besides those included in the 
original Hodgkin-Huxely description. For example we can determine how additional currents 
affect the time-dependent threshold of the binary model. This is presently being done. 
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