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Abstract

We investigate bifurcations observed in a Morris-Lecar
neuron model. Especially, we paid attention to the
change of bifurcation structures between type I and type
II models. We found that the transition of properties be-
tween type I and II is controlled by only one-dimensional
variation of a potential in a voltage-dependent function.

1. Introduction

We investigate bifurcations in a model equation of
Morris-Lecar (M-L) neuron[1]. The neuronal model ex-
hibits properties of both type I and type II membranes
excitability by setting of its system parameters. It is
known that neuronal models are classified by the dynam-
ical structure that underlies the onset of autonomous
periodic firing[2]. From a bifurcational point of view,
the generation of the periodic firing in the type I model
results from a saddle-node (tangent) bifurcation of equi-
librium points. On the other hand, if the periodic firing
occurs by a sub-critical Hopf bifurcation, the neuron is
called a type II[4]. For example, the Hodgkin-Huxley(H-
H) neuron model[3] is a typical type II model.

The M-L type I model is considered as an important
model for studying dynamics in a single neuron, because
pyramidal cells in the real brain have been thought to be
type I neuron. Although there are lots of papers on bifur-
cation phenomena in the H-H neuron model, relatively
little has been investigated for the M-L model[4, 5].

In Ref.[4], Rinzel and Ermentrout studied mechanisms
of bifurcation using the M-L neuron model when Iext,
representing the externally applied constant DC current,
changes. They showed some system parameters to deter-
mine whether the property of the neuron model is type
I or type II. These system parameters are the maximal

conductance of Ca2+ current, the maximum rate con-
stant for K+ channel opening, a potential in a voltage-
dependent function (N∞) and the reciprocal of slope of
N∞. However, there are no discussion on bifurcation
phenomena with respect to the change of properties of
the neuron by varying these parameters. We are inter-
ested in how the alternation of the property of the M-L
neuron is influenced by varying multiple-parameter.

In this study, we change above mentioned parameters
of the M-L model over wide ranges, including those stud-
ied by Ref.[4], and consider a global structure of bifur-
cation in the multiple-parameter space. In particular,
we pay attention to the change of bifurcation structures
between type I and type II models. To calculate vari-
ous bifurcations[6], we obtain two-parameter bifurcation
diagrams with Iext as the abscissa and the other param-
eter as the ordinate. Using these bifurcation diagrams,
we identify the parameter regions in which the M-L neu-
ron with the type I characteristic behaves. As a result,
we found that the change of several parameters of the
maximal conductance of Ca2+ current, the maximum
rate constant for K+ channel opening and the recipro-
cal of slope of N∞ contributes little to alterations of the
bifurcation structure. Furthermore, we clarified that a
periodic solution appears through a homoclinic bifurca-
tion.

2. M-L Neuron Model

The M-L neuron model[1] is described by

CM
dV

dt
= −gL(V − VL) − gCaM∞(V − VCa)

−gKN(V − VK) + Iext
dN

dt
= λN (N∞ − N) (1)



where M∞, N∞ and λN , respectively, are assumed as the
following functions

M∞ = 0.5 [1 + tanh {(V − V1)/V2}] (2)
N∞ = 0.5 [1 + tanh {(V − V3)/V4}] (3)
λN = φ cosh {(V − V3)/2V4} (4)

In the following, several system parameters except for
Iext, gCa, φ, V3 and V4, representing the applied DC cur-
rent, a maximal conductance of Ca2+ current, a maxi-
mum rate constant for K+ channel, a potential in the
voltage-dependent function (N∞) and the reciprocal of
slope of N∞, respectively, in Eqs.(1)–(4) are listed in
Table 1.

3. Analytical Methods and Notation

Before showing results, we summarize method and
notations used in bifurcation diagram. Considering a
Poincaré section for a limit cycle, the analysis of limit
cycles can be reduced to an analysis of fixed and periodic
points of the Poincaré map. Bifurcation occurs when the
topological type of a fixed point is changed by the vari-
ation of a system parameter. Bifurcations of limit cycle
appeared in this paper are as follows

1. Tangent bifurcation: One of characteristic multipli-
ers is 1. By changing a parameter, a pair of fixed or
periodic points generates.

2. Homoclinic bifurcation: This global bifurcation is
caused by a connection of stable and unstable man-
ifolds of an equilibrium point. A limit cycle may
generate due to the variation of system parameter.

The numerical determination of generic bifurcation val-
ues is accomplished by using the method proposed by
Kawakami[6]. Moreover, for the calculation of the ho-
moclinic bifurcation parameter and the orbit, we use the
method in Refs.[7, 8].

Table 1: Fixed parameters for the M-L neuron.

CM = 5.0 [µF/cm2]
gK = 8 [µS/cm2]
gl = 2 [µS/cm2]

VCa = 120 [mV]
VK = -80 [mV]
Vl = -60 [mV]
V1 = -1.2 [mV]
V2 = 18 [mV]

In the bifurcation diagram, g� and h� indicate tan-
gent and Hopf bifurcations for equilibrium points, re-
spectively, where � indicates the number to distinguish
the several same sets, if they exist. For tangent and ho-
moclinic bifurcations of limit cycles, symbols G and H,
respectively, are used.

4. Results and Discussion

By the numerical analysis, we obtained bifurcation di-
agrams of the Iext versus gCa, φ, V3, V4 planes. For the
limited number of pages, three bifurcation diagrams ex-
cept for Iext–V3 plane are omitted in this paper. In
the following, let us consider bifurcations in the Iext–
V3 plane. Bifurcation diagram of equilibrium points and
a limit cycle with Iext as the abscissa and V3 as the
ordinate is shown in Fig. 1.
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Figure 1: Bifurcation diagram for equilibrium points and
a limit cycle. Fixed parameters as gCa = 4.0 [µS/cm2],
φ = 1/15 [s−1], V4 = 17.4 [mV]. The region
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indicates
parameter at which a stable limit cycle exits.

First, we consider bifurcations of generation of a limit
cycle. Figure 2(a) shows a one-parameter bifurcation di-
agram, by varying the value of Iext, for fixed value of
V3 = 12[mV]. By increasing the value of Iext along the
line �1 in Fig.1, the stable equilibrium point with type of
0O causes the tangent bifurcation g1 with saddle point
with type of 1O. After this tangent bifurcation, a limit
cycle generates. The phase portraits and waveforms be-
fore and after the tangent bifurcation g1 are illustrated
in Figs. 3(a)–(c). The values of Iext labeled by (a)–(c) in
Fig. 2(a) show parameters at which the attractors shown
in Figs. 3(a)–(c) are observed, respectively.

Next, we show a mechanism of generation of a limit
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Figure 2: One-parameter bifurcation diagrams. In this
figure, symbols with types 0O, 1O, 2O, 0D and 1D indi-
cate stable, saddle, unstable equilibrium points, stable
and unstable limit cycles, respectively.

cycle, when Iext changes along the line �2 in Fig. 1.
Figure 2(b) shows a one-parameter bifurcation diagram
for a fixed value of V3 = 2 [mV]. By increasing the value
of Iext through the Hopf bifurcation h2, we can observe
a bifurcation with formula:

0O + 1D → 2O (5)

where the left- and right-hand sides of the arrow indi-
cate the unstable limit cycle and equilibrium points be-
fore and after the bifurcation, respectively. The unstable
limit cycle with type 1D causes tangent bifurcation G2

with stable limit cycle by decreasing the value of Iext.
Figure 3(d) shows an example of trajectories. At the
parameter value, stable, unstable limit cycles and stable
equilibrium point coexist. We see that the stable limit
cycle generates due to the tangent bifurcation with the
unstable limit cycle caused via sub-critical Hopf bifurca-
tion. Namely, when the value of V3 is 2 [mV], the M-L
neuron model exhibits as type II model.

Finally, let us consider a homoclinic bifurcation in
Fig.1. By increasing the value of V3, for a fixed value
of Iext as, e.g., 20 [µA/cm2], a unstable limit cycle with
type 1D generates by Hopf bifurcation h1. Moreover,
the generated unstable limit cycle causes a homoclinic
bifurcation H with formula:

1O + 1D → 1O (6)

As a result, the unstable limit cycle disappears by the
homoclinic bifurcation. In Fig. 1, the point labeled by p
denotes a co-dimension three bifurcation point. Due to
the co-dimension three bifurcation point, tangent bifur-
cations of equilibrium points are divided into two bifur-
cations denoted by g1 and g2 in Fig. 1: (1) by passing
through the curve g1, a limit cycle generates, and (2)
only a stable equilibrium point remains via tangent bi-
furcation g2. The first bifurcation process means that
the M-L neuron exhibit as the type I model.

In the following, we discuss the alternation of the prop-
erty of the M-L neuron from type I to type II. The
classification of type I and II neurons was proposed by
Hodgkin[2], who found arbitrarily low response frequen-
cies and spike latencies(type I) and a narrow range of
responses with no spike delay(type II). Rinzel and Er-
mentrout have been studied the change of properties be-
tween type I and II models from the bifurcational point
of view[4, 5]. They showed system parameters to deter-
mine whether the property of the M-L neuron model is
type I or type II neuron, see Table 2.

In this study, we have calculated bifurcation by chang-
ing Iext and one of the parameters(gCa, φ, V3 and V4;
the parameters other than used in each bifurcation di-
agrams are set to the values of type I model in Table
2). The characteristic of the type I neuron is that the
neuron starts periodic firing via a tangent bifurcation
of equilibrium points. When Iext is relatively small, by
varying the value of V3 from 12 [mV] to 2 [mV], the
bifurcation structure changes since the tangent bifurca-
tion with symbols of g1 and g3 forms cuspidul point in
Fig.1. In other parameter planes, e.g., Iext–gCa, Iext–φ
and Iext–V4 planes, above mentioned alternations of the
bifurcation structures could not occur. As the result,

Table 2: System parameters classified as Type I and II
model[4, 5].

parameter type I type II
gCa [µS/cm2] 4.0 4.4

φ [s−1] 1/15 1/25
V3 [mV] 12 2
V4 [mV] 17.4 30
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(a) (Iext, V3) = (30, 12) (b) (Iext, V3) = (39.8, 12)
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(c) (Iext, V3) = (70, 12) (d) (Iext, V3) = (50.5, 2)

Figure 3: Examples of trajectories observed in Eq.(1). In phase portraits, the black, white and double circles denote
a stable, an unstable and a saddle equilibrium points, respectively. The arrow indicates the direction of trajectory
in phase portraits. The heavy solid and dashed lines of closed curve, respectively are a stable limit cycle and an
unstable limit cycle. The light and heavy dashed lines indicate the V – and N–nullclines in Eq.(1), respectively.

we see that the alternation of property of the M-L neu-
ron can be controlled by changing the only parameter
V3, representing the potential in the voltage-dependent
function in Eq.(3).

5. Conclusions

We have investigated bifurcations in the M-L neuron
model. The main results of the analysis are summa-
rized as follows: (1) We have clarified that the transition
of property between type I and II is controlled by only
one-dimensional variation of the potential in a voltage-
dependent function. (2) The change of several param-
eters of the maximal conductance of Ca2+ current, the
maximum rate constant for K+ channel opening and the
reciprocal of slope of N∞ contributes little to alterations
of the bifurcation structure.

Analysis of a synaptically coupled M-L neuron with
the property of type I is an interesting future problem
to be considered.
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