The importance of isotopic spatial baselines

Dr. Hannah James Vrije Universiteit Brussel

Overview

- Which isotopes require baselines?
 - Strontium
 - Oxygen
 - Sulphur
- What archives can we sample for baselines
- How we sample for baseline?
- Which archives are best?
- Debates in archive and mapping approaches
- Creating baseline maps

Why do we need an isotopic baseline?

So we have something to compare our measured value to

Strontium

- Alkali earth metal
- Expressed as ⁸⁷Sr/⁸⁶Sr ratio in a sample

Indicator of mobility in archaeological contexts

- ⁸⁶Sr is stable whereas ⁸⁷Sr is formed by the decay of ⁸⁷Rb
 - Half life of 48.8 billion years
- Rock⁸⁷Sr/⁸⁶Sr ratio depends on:
 - how much ⁸⁷Rb is in the sample,
 - how long the ⁸⁷Rb has been decaying (i.e. how old the sample is)
- ⁸⁷Sr/⁸⁶Sr ratios in archaeology typically range ~0.702-0.750, with the number of decimal places reported according the standards
- Sr substitutes for Ca in bones and teeth

What influences strontium in an environment?

- Geology
- Atmospheric depositions
 - Sea spray
 - Dust
 - Rain
- Glacial transport of soils
- Fluvial transport of soils
- Groundwater
- Differential weathering of minerals within a rock

- Volcanic tephra
- Erosion
- Mixing of sources
- Anthropogenic influences
 - Fertilisers

Bioavailable Sr baselines

0.750 Global - Bataille et al., 2020

Europe - Hoogewerff et al., 2019

France - Willmes et al., 2018

Ireland - Snoeck et al., 2020

The Netherlands -Kootker et al., 2016

Basel Switzerland -Brönnimann et al., 2018

ozoic metamorphics (hg) lants & soil leachates oPlants, soil leachates & water ■Soil leachates oThis study □Hoogewerff et al. (2019 Southern Almería - Frank et al., 2022

Southwestern Turkey - Wong et al., 2021

- Geology
- Plants
- Soil leachates
- Surface water
- Archaeological fauna
- Invertebrates
- Modern fauna

Caribbean region - Bataille et al., 2012

- Geology
- Plants
- Soil leachates
- Surface water
- Archaeological fauna
- Invertebrates
- Modern fauna

Ireland - Snoeck et al., 2020

- Geology
- Plants
- Soil leachates
- Surface water
- Archaeological fauna
- Invertebrates
- Modern fauna

Israel - Moffat et al., 2020

Testing strontium soil leaching methods

- Geology
- Plants
- Soil leachates
- Surface water
- Archaeological fauna
- Invertebrates
- Modern fauna

Denmark - Frei and Frei, 2011

- Geology
- Plants
- Soil leachates
- Surface water
- Archaeological fauna
- Invertebrates
- Modern fauna

The Netherlands - Kootker et al., 2016

- Geology
- Plants
- Soil leachates
- Surface water
- Archaeological fauna
- Invertebrates
- Modern fauna

France- Britton et al., 2020

What can we sample

- Geology
- Plants
- Soil leachates
- Surface water
- Archaeological fauna
- Invertebrates
- Modern fauna

Cape York Australia Adams et al., 2019

- Geology
- Plants
- Soil leachates
- Surface water
- Archaeological fauna
- Invertebrates
- Modern fauna

Cape York Australia Adams et al., 2019

0.703 0.709 0.715

Do we need high-density sampling?

Sr predictions for Corsica

ELSEVIER

Applied Geochemistry Volume 90, March 2018, Pages 75-86

Mapping of bioavailable strontium isotope ratios in France for archaeological provenance studies

Malte Willmes^{a, b} Q 😝 , Clement P. Bataille^c, Hannah F. James^a, Ian Moffat^{a, d}, Linda McMorrow^a, Leslie Kinsley^a, Richard A. Armstrong^a, Stephen Eggins^a, Rainer Grün^a^e

Palaeogeography, Palaeoclimatology, Palaeoecology Volume 555, 1 October 2020, 109849 PALAEO == 3

Invited review article

Advances in global bioavailable strontium isoscapes

<u>Clement P. Bataille</u>^a Q. ⊠, <u>Brooke E. Crowley</u>^{b c} ⊠, <u>Matthew J. Wooller</u>^{d e} ⊠, <u>Gabriel J. Bowen</u>^f ⊠

Bioavailable Sr measurements

- Two datasets
 - Triple plant sampling
 - Paired plant and soils
- 245 plant samples
- 83 soil leachate samples
- Overall ⁸⁷Sr/⁸⁶Sr range of 0.7075 to 0.7169

How does the prediction compare to the measured values?

: Impure carbonate Metamorphic rock Conglomerate Igneous material Mica schist Monzogranite Rhyolitoid Schist Paragneiss Granite Gabbro Surface geology

What methods do we use for making a map?

- Domain
- Contour
- Machine learning

Review paper Holt et al., 2021

Mapping Portugal

New paired measurements of plants and soils from 151 sites across Portugal, plus:

- 33 soil sites (Hoogewerff et al., 2019, STOTEN)
- 20 plants from Perdigões (Žalaitė et al., 2018 JASR; Valera et al., 2020 JASR)

Range of 87 Sr/ 86 Sr = 0.7058 to 0.7349

Journal of Archaeological Science Volume 142, June 2022, 105595

A large-scale environmental strontium isotope baseline map of Portugal for archaeological and paleoecological provenance studies

Hannah F. James ^{a, b, c} A , Shaun Adams ^{d, e}, Malte Willmes ^{f, g}, Kate Mathison ^d, Andrea Ulrichsen ^a, Rachel Wood ^{a, h}, Antonio C. Valera ^{i, j}, Catherine J. Frieman ^a, Rainer Grün ^{d, h}

Sampling

Lab work

Mapping Portugal

Close correlation between soil and plant ⁸⁷Sr/⁸⁶Sr

Range of ⁸⁷Sr/⁸⁶Sr in surface geologies

James et al., 2022, JAS

Portugal plant isoscapes

Empirical Bayesian Kriging Regression using surface geology and elevation as explanatory variables Median per surface geology unit (1:1million OneGeology)

James et al., 2022, JAS

Importance of mapping at archaeological sites

Country baseline predicts local region is ⁸⁷Sr/⁸⁶Sr = 0.7136-0.7155

Measured plants extend this range to ⁸⁷Sr/⁸⁶Sr = 0.7115 to 0.7184

Site data from Žalaite et al., 2018 JASR; Valera et al., 2020 JASR

James et al., 2022, JAS

More BASr for Portugal

More data:

- 2 unpublished regional datasets on grass, shrubs, and trees at 93 sampling sites, 279
 ⁸⁷Sr/⁸⁶Sr values
- 4 additional plants from archaeological sites
- **39** archaeological samples
- **34** natural mineral waters, surface waters and snow

In total 334 sampling sites with 706 87Sr/86Sr measurements

Wright et al., 2019 JASR; Price et al., 2014; Carvalho et al., 2019 AAS; Waterman et al., 2010 JAS; MacRoberts at al., 2020 JASR; Voerkelius et al., 2010 Food Chem. ; Ribeiro et al., 2014 Comunicações Geológicas

Combining datasets in Portugal

Empirical Bayesian Kriging Regression using surface geology and elevation as explanatory variables Median per surface geology unit (1:1million OneGeology)

How well can plant baselines predict other sample types?

Measured ⁸⁷Sr/⁸⁶Sr

 \triangle EBK Regression \Box Median per unit

Mapping Czechia

- Plant samples from 65 sampling sites
- Site medians range from ⁸⁷Sr/⁸⁶Sr = 0.7084 – 0.7208

Using the Sr baseline in Ireland

AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY

Research Article Di Full Access

Mobility during the neolithic and bronze age in northern ireland explored using strontium isotope analysis of cremated human bone

Christophe Snoeck 💌 John Pouncett, Greer Ramsey, Ian G. Meighan, Nadine Mattielli, Steven Goderis, Julia A. Lee-Thorp, Rick J. Schulting

First published: 09 April 2016 | https://doi.org/10.1002/ajpa.22977 | Citations: 32

Using the Sr baseline in Ireland

Ballynahatty

Ballymacaldrack

(b)

Using the Sr baseline in Ireland

Annaghmare

(b)

(a)

(a)

(b)

Sr baselines in ecology

RESEARCH ARTICLE

CONSERVATION ECOLOGY

Strontium isotopes delineate fine-scale natal origins and migration histories of Pacific salmon

Sean R. Brennan,^{1,2,*†} Christian E. Zimmerman,^{3,4} Diego P. Fernandez,⁵ Thure E. Cerling,⁵ Megan V. McPhee,^{1,6} Matthew J. Wooller^{1,2}

Palaeontology

Seasonal migration of marsupial megafauna in Pleistocene Sahul (Australia – New Guinea)

Gilbert J. Price¹, Kyle J. Ferguson¹, Gregory E. Webb¹, Yue-xing Feng¹, Pennilyn Higgins², Ai Duc Nguyen¹, Jian-xin Zhao¹, Renaud Joannes-Boyau³ and Julien Louys⁴

Palaeontology

The 87 Sr/ 86 Sr ratios (n = 37) fluctuate between 0.706333 and 0.707396 along the tooth

Oxygen isotopes (δ^{18} O)

- →Rain δ¹⁸O changes with amount of rain and temperature
- →Oxygen in human tissues mainly from drinking water

 $\begin{array}{lll} \rightarrow \mbox{Assuming that water} & \rightarrow \mbox{\delta}^{18}\mbox{O reflects rain} \\ \mbox{is sourced locally} & \mbox{during the time the} \\ \mbox{from rainwater} & \mbox{tissue was forming.} \end{array}$

Not just mobility influencing $\delta^{18}O$

- Seasonal changes in rain
 - ~3‰ between summer and winter
- Breastfeeding
 - Breastmilk is more enriched in ¹⁸O,
- Water sources
- Humans doing stuff to liquids
 - Storing
 - Boiling
 - Stewing
 - Brewing
 - Slow cooking

What can you measured δ^{18} O in?

Fractionation

The incorporation of O isotopes into skeletal tissues involves a fractionation

Offset between structural carbonates ($\delta^{18}O_{C}$) and body water is ~ 27‰; the phosphate ($\delta^{18}O_{P}$) to body water offset is smaller ~ 18‰

Difference between carbonate and phosphate oxygen in human tooth enamel explained by the equation:

 $\delta^{18}O_P = 1.0322 (\pm 0.008) \times \delta^{18}O_C - 9.6849 (\pm 0.187)$ - (Chenery et al., 2012)

Converting δ^{18} O values into water values $\delta^{18}O_w = 1.54 \times \delta^{18}O_p - 33.72$ (Daux et al., 2008) $\delta^{18}O_w = 1.590 \times \delta^{18}O_c - 48.634$ (Chenery et al., 2012)

Equations are species specific

USA

Rainfall

Surface water

Ehleringer., 2016; Kendall and Coplen 2001

Tap water

Body water

Ehleringer., 2016; Kendall and Coplen 2001

Mexico

Juarez et al., 2019

Groundwater (Pellegrini et al., 2016)

Tooth enamel carbonate (Pellegrini et al., 2016)

Journal of Archaeological Science Volume 33, Issue 2, February 2006, Pages 265-272

A strontium and oxygen isotope assessment of a possible fourth century immigrant population in a Hampshire cemetery, southern England

Jane Evans^a, Nick Stoodley^b 😤 🖾, Carolyn Chenery^a

Journal of Anthropological Archaeology Volume 36, December 2014, Pages 32-47

New isotope data on Maya mobility and enclaves at Classic Copan, Honduras

T. Douglas Price ^a A 🖾, Seiichi Nakamura ^b, Shintaro Suzuki ^c, James H. Burton ^d, Vera Tiesler ^e

Journal of Archaeological Science: Reports Volume 8, August 2016, Pages 416-425

Stable oxygen isotope evidence for mobility in medieval and post-medieval Trondheim, Norway

Stian Suppersberger Hamre ^a ∧ ⊠, Valérie Daux ^b ⊠

An Anglo-Saxon Decapitation and Burial at Stonehenge

by Mike Pitts¹, Alex Bayliss², Jacqueline McKinley³, Anthea Boylston⁴, Paul Budd⁵, Jane Evans⁶, Carolyn Chenery⁶, Andrew Reynolds⁷ and Sarah Semple⁸

Earth and Planetary Science Letters Volume 375, 1 August 2013, Pages 92-100

Regular Articles Strangers in a Strange Land: Stable Isotope Evidence for Human Migration in the Dakhleh Oasis, Egypt

Tosha L. Dupras^{a, f1}, Henry P. Schwarcz^b

Show more

https://doi.org/10.1006/jasc.2001.0640

Get rights and content

archaeo**metry**

Original Article 🛛 🔂 Full Access

OXYGEN AND CARBON ISOTOPE ANALYSIS OF HUMAN DENTAL ENAMEL FROM THE CARIBBEAN: IMPLICATIONS FOR INVESTIGATING INDIVIDUAL ORIGINS

J. E. LAFFOON 🔀, R. VALCÁRCEL ROJAS, C. L. HOFMAN

First published: 19 July 2012 | https://doi.org/10.1111/j.1475-4754.2012.00698.x | Cited by: 22

Journal of Archaeological Science Volume 28, Issue 11, November 2001, Pages 1199-1208 ELSEVIER

Egyptian mummies record increasing aridity in the Nile valley from 5500 to 1500 yr before present

Alexandra Touzeau ^a, Janne Blichert-Toft ^a, Romain Amiot ^a, François Fourel ^a, François Martineau ^a, Jenefer Cockitt ^b, Keith Hall ^c, Jean-Pierre Flandrois ^d, Christophe Lécuyer ^a 21

PLOS ONE

PUBLISH ABOUT

ABOUT BROWSE

🔓 OPEN ACCESS 🖻 PEER-REVIEWED

RESEARCH ARTICLE

On the Use of Biomineral Oxygen Isotope Data to Identify Human Migrants in the Archaeological Record: Intra-Sample Variation, Statistical Methods and Geographical Considerations

Emma Lightfoot, Tamsin C. O'Connell 🖂

Published: April 28, 2016 • https://doi.org/10.1371/journal.pone.0153850

European tooth enamel $\delta^{18}O_p$ fall within 13.7 to 20.7‰ (a total of 1266 individuals from 91 sites).

63 of the 92 analysed European sites fall between δ^{18} O = -9 and -7‰, and all sites have δ^{18} O of between -10.5 and -5.8‰

Number of outliers in a population is dependent on the number of samples analysed from that population.

How do you identify outliers?

Lightfoot et al., 2016

PLOS ONE

G OPEN ACCESS 👂 PEER-REVIEWED

RESEARCH ARTICLE

Tracking cats revisited: Placing terrestrial mammalian carnivores on $\delta^2 {\rm H}$ and $\delta^{18} {\rm O}$ isoscapes

Geoff Koehler 🚥 🖾, Keith A. Hobson 🚥

Published: September 3, 2019 • https://doi.org/10.1371/journal.pone.0221876

Isotopic Tracking of Change in Diet and

Paul L. Koch, Jennifer Heisinger, Cynthia Moss, Richard W. Carlson, Marilyn L. Fogel, Anna K. B

Habitat Use in African Elephants

See all authors and affiliations

Palaeogeography, Palaeoclimatology, Palaeoecology Volume 301, Issues 1-4, 15 February 2011, Pages 64-74

PALAEO

Intra-tooth oxygen isotope variation in a known population of red deer: Implications for past climate and seasonality reconstructions

Rhiannon E. Stevens ^a $\stackrel{>}{\sim}$ $\stackrel{\boxtimes}{\sim}$ Marie Balasse ^b, Tamsin C. O'Connell ^{a, c}

Keith A. Hobson · Gabriel J. Bowen · Leonard I. Wassenaar · Yves Ferrand · Hervé Lormee

Using stable hydrogen and oxygen isotope measurements of feathers to infer geographical origins of migrating European birds

Annual rainfall $\delta^{18}O$

Terzer et al., 2013

$\delta^{18}O$ databases

IAEA I	NUCLEUS V	VISER Contact Us	Welcome 🖁 🕱
(D)	IAEA	WISER Water Isotope System for data analysis visualization and Electronic Retrieval	
About	Datasets		

♠ > NUCLEUS > Wiser > Datasets

GNIP-Monthly Czech Republic

4

Searc	n Filter											Bulk download
Group: Location	GNIP-Monthly		•	Between: <u>1953</u> • and Isotopes: ■ ¹⁸ O ■ ² H	2022 ▼ ■ ³ H			Sea	arch: cz	ec]
	Group 🔺	Country	¢	Site/Project		Start	End	Samples	≜ ¹⁸ O	∳ ²H	♦ ³H	÷
1	GNIP-Monthly	Czech Republic		CESKE BUDEJOVICE		2016	2019	48	40	40	0	View
2	GNIP-Monthly	Czech Republic		CHURANOV		2016	2019	48	41	41	0	View
3	GNIP-Monthly	Czech Republic		PRAGUE (WRI)		2012	2021	120	93	93	69	View

2006

2021

192

184

184

169

View

UHLIRSKA

δ^{18} O databases

00383 - Aust

Water-Isotop

East Longitude

180.00000000

00001 - Antarctic

00002 - Owen Ice 00003 - Big Bend

00004 - CNIP dat

00005 - AIRMoN

00006 - Criss (19!

δ¹⁷0

00007 - Camp Ce *

δ^{18} O databases

Main	OIPC: The Online Isotopes in Precipitation Calculator				
Information	<u>Citing the OIPC</u>				
Data Products	Enter site coordinates:				
Web Resources	Latitude (decimal deg; North positive)				
Waterisotopes Database	Longitude (decimal deg; East positive) Elevation (meters)				

Do Confidence Intervals (computing intensive)

Annual values O Monthly values

Submit Reset Form

OIPC3.1 See version notes here.

OIPC2.2 is archived here

Sulphur (δ^{34} S)

-15.4 to -7.1‰

Continental minerals

Sulphur

Triple sulfur-oxygen-strontium isotopes probabilistic geographic assignment of archaeological remains using a novel sulfur isoscape of western Europe

Clément P. Bataille 🚥 🖾, Klervia Jaouen 🚥 🖾, Stefania Milano, Manuel Trost, Sven Steinbrenner, Éric Crubézy, Rozenn Colleter 🖾

 Using Sr, O and S isotope analysis to determine the origin of teeth with known origins.

Spatial distribution of the sulfur isotope composition (δ^{34} S) across Europe from a compilation of animal and human teeth from post-Mesolithic times

Combining Sr, O and S isoscapes

Fig 3. Maps showing the probability of tooth origin of the dog according to the selected isotopes (strontium, sulfur and/or oxygen). Depending on the isotopes and combinations of isotopes used, the geographical area of assignment is increasingly more precise.

Sulphur for animal migrations

Research | Open Access | Published: 18 September 2020

Tracking animal movements using biomarkers in tail hairs: a novel approach for animal geolocating from sulfur isoscapes

Zabibu Kabalika ^{CC}, Thomas A. Morrison, Rona A. R. McGill, Linus K. Munishi, Divine Ekwem, Wilson Leonidas Mahene, Alex L. Lobora, Jason Newton, Juan M. Morales, Daniel T. Haydon & Grant G. J. C. Hopcraft

21.99 - 30.86

oclastics with alkaline volcani

redominantly volcanic lavas

Journal of Animal Ecology

RESEARCH ARTICLE | 🙃 Full Access

Animal tracing with sulfur isotopes: Spatial segregation and climate variability in Africa likely contribute to population trends of a migratory songbird

Vojtěch Brlík 💌, Petr Procházka, Bengt Hansson, Craig A. Stricker, Elizabeth Yohannes, Rebecca L. Powell, Michael B. Wunder

First published: 21 November 2022 | https://doi.org/10.1111/1365-2656.13848

Large-scale δ³⁴S isotopic map for sub-Saharan Africa

Conclusions

- Environmental baselines are crucial for understanding any bioarchaeological analyses
- Baselines need to be appropriate for the samples and the research question

• Any questions, feel free to contact me -Hannah.James@vub.be

This project has received funding from the European Union's Horizon 2020 research & innovation programme under grant agreement n° 948913

Interpreting data using an isoscape

- You have 87 Sr/ 86 Sr and ${\delta}^{18}$ O data from 10 tooth enamel samples from a cemetery.
- Samples split into two groups (A and B), with two outliers (C and D).
- All teeth sampled were M3.
- The site is located above a river at the edge of a mountain range.
- There is evidence of a settlement next to the site.

87 Sr/ 86 Sr and δ^{18} O data

	⁸⁷ Sr/ ⁸⁶ Sr	δ ¹⁸ Ο (‰)	Group
Ind 1	0.7071	-13.3	A
Ind 2	0.7072	-13.4	Α
Ind 3	0.7073	-13.3	A
Ind 4	0.7072	-13.4	A
Ind 5	0.7087	-9.1	В
Ind 6	0.7088	-8.9	В
Ind 7	0.7089	-9.2	В
Ind 8	0.7088	-9.0	В
Ind 9	0.7214	-9.6	С
Ind 10	0.7103	-6.4	D

Modelled bioavailable ⁸⁷Sr/⁸⁶Sr values for the global land surface based on measured rock, soil, plant, water, animal and human data (Bataille et al., 2020)

Questions

- Do you think these baselines are appropriate for determining past human mobility?
- Based just on the measured individual values and these two isoscapes, do you think all these individuals could be local to the site?
- Are these individuals from the wider region represented by these isoscapes?
- Where might they be from?

Let's think about how archaeological information can help us narrow our predictions

- Archaeobotanical evidence indicates large-scale hunting of deer, which are known to live in high altitudes of the mountain range.
- Do you think consuming deer meat would influence the ⁸⁷Sr/⁸⁶Sr in these individuals?
- If so, which group (if any) might reflect this diet?
- The most likely drinking water source at the site are streams which are sourced from higher altitudes. How would that influence the δ^{18} O value?
 - Which group (if any) might reflect this drinking water?

Archaeobotanical evidence from the site shows high consumption of wheat and regions northwest of the site are the ideal region for growing wheat.

- How would the consumption of wheat grown in this region influence the ⁸⁷Sr/⁸⁶Sr?
- If so, which group (if any) might reflect this?

Final thoughts

- If we assume that groups A and B are both local to a region, how would you interpret the $^{87}Sr/^{86}Sr$ and $\delta^{18}O$ data?
- How has this changed from your first interpretation?
- Lastly, can you think of any other information that would help you in including or excluding regions of possible origins?