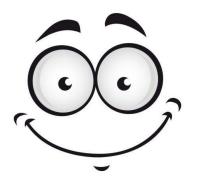
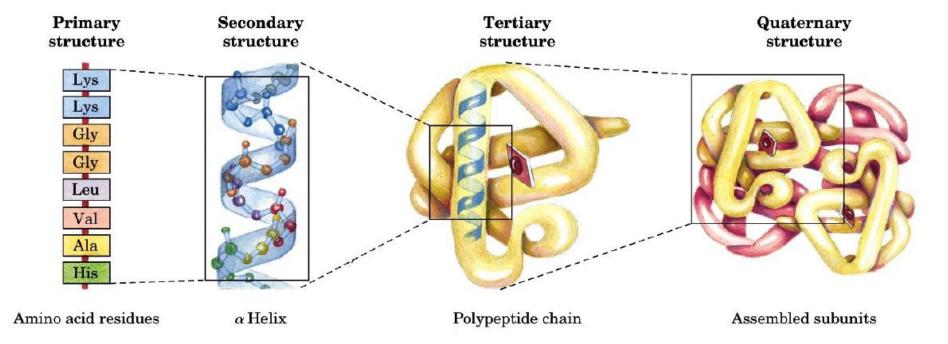


Structure of biomolecules


Outline

Proteins

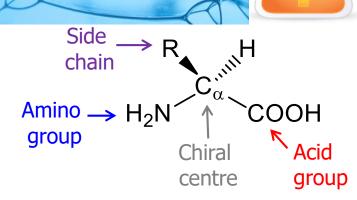
- Primary structure
- Secondary structure
- Tertiary structure
- Motifs and folds
- Quaternary structure
- Nucleic acids
 - Main types of structures
- Primary structural databases
- Structural data formats
 - PDB and mmCIF formats


Protein structure

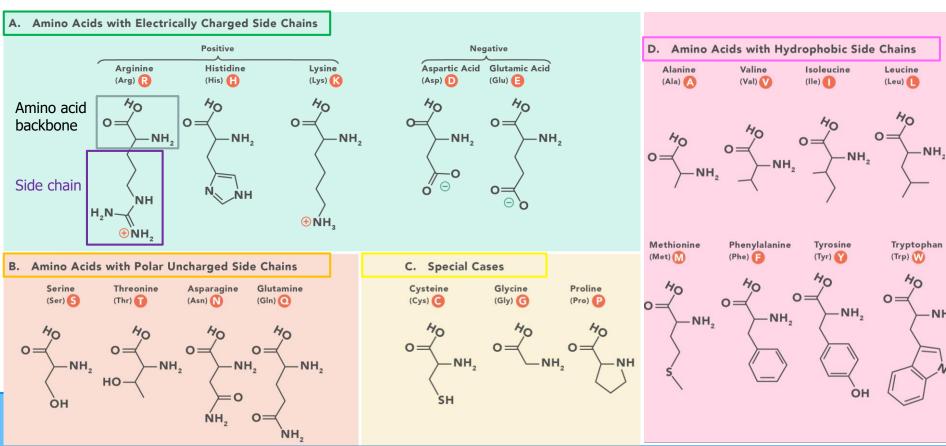
Structure of proteins are...

3

Hierarchy of protein structure



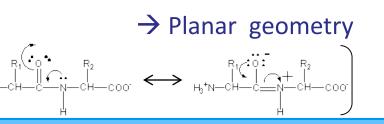
Amino acids

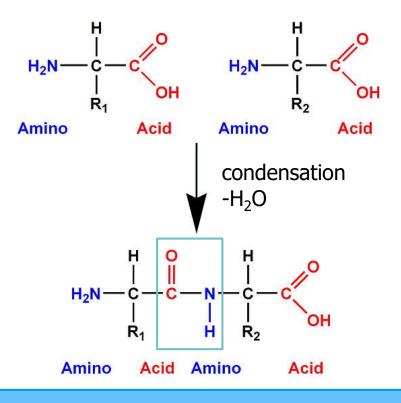

20 L-amino acids (natural)

Side chains

> Charged, polar, hydrophobic

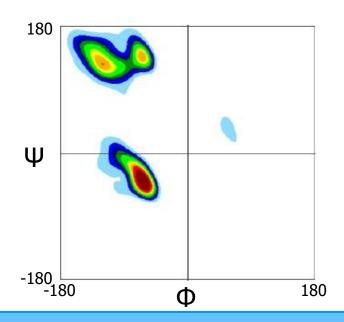
NH.

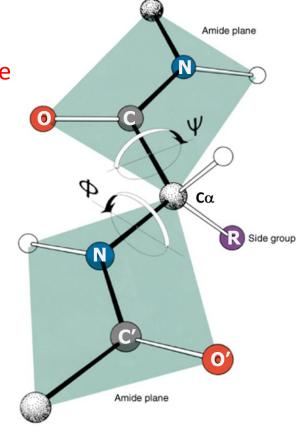

Primary structure


□ Linear chain of amino acid residues

MSLGAKPFGEKKFIEIKGRRMAYIDEGTGDPILFQHGNPTSSYLWRI<mark>N</mark>IM N-terminus C-terminus

Protein backbone


- From N-terminus to C-terminus
- Connected by covalent bonds
- Peptide bond (amide bond)
 - Partial double bond character

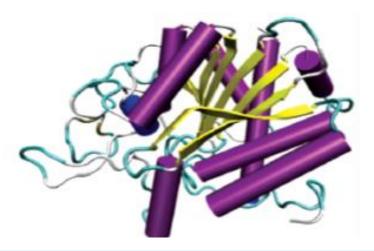


Geometry of protein backbone

- Conformation of the peptide chain
 - Defined by Φ (phi) and Ψ (psi) dihedral angle
- Ramachandran plot (Φ, Ψ)
 - ightarrow The majority of proteins follow this distribution

 φ (phi) = dihedral angle {C' - N - C_a - C} ψ (psi) = dihedral angle {N - C_a - C - N}

Secondary structure


- □ Local three-dimensional structure of polypeptide chain
- Governed by hydrogen bonding between backbone

Regular patterns

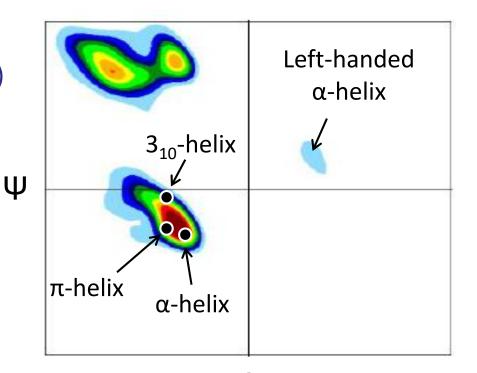
atoms

- Types of structures
 - Helices
 - β-Structures
 - Loops and coils Irregular patterns

Secondary structure

DSSP (hydrogen bond estimation algorithm)

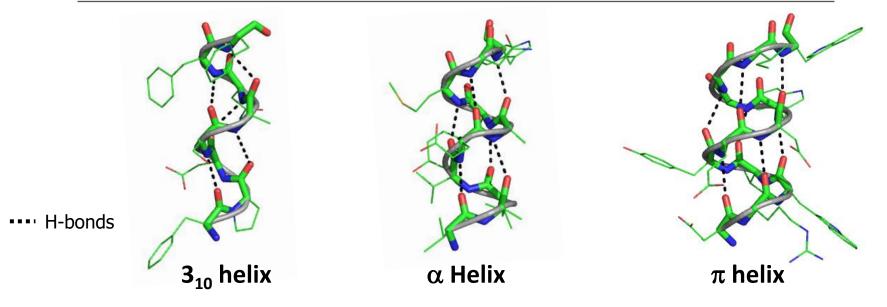
- The most common method for assigning secondary structure
- Starts by identifying the intra-backbone hydrogen bonds (between NH ····· O=C)
- Hydrogen bond exists if $E \leq -0.5$ kcal/mol
- The type of repetition will assign the residue to one of 7 types
 (3 major types: helices, strands and loops)


$$E = 0.084 \left\{ rac{1}{r_{ON}} + rac{1}{r_{CH}} - rac{1}{r_{OH}} - rac{1}{r_{CN}}
ight\} \cdot 332 \, ext{kcal/mol}$$

Polypeptide bond

Helices

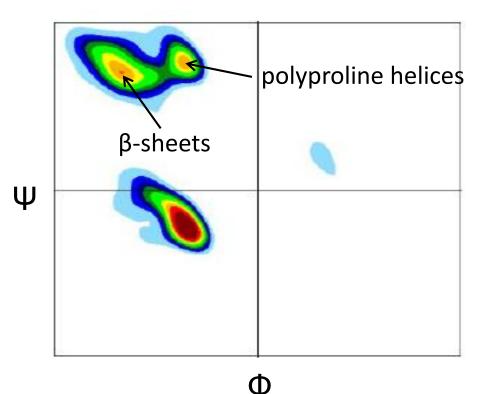
Types of helices


- 3.6_{13} helix (α -helix) most common
- 3_{10} helix less frequent, end of α -helices
- 4.1₁₆ helix (π -helix) (rare)
- Left-handed helix (very rare)
- → Represented by helical cartoons or cylinders
- Right-handed (mostly)
- Hydrogen bonding
 - Within a single chain

Φ

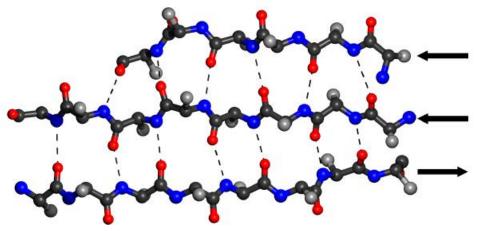
Helices

Туре	310	α	π
Residues per turn	3.0	3.6	4.1
Atoms in H-bonded ring	10	13	16
Hydrogen bonding	n - n + 3	n - n + 4	n - n + 5
Angle between neighboring residues	120	100	88
Helical rise per amino acid residue (Å)	2.0	1.5	1.15
φ (°)	-75	-60	-75
ψ(°)	-5	-45	-40

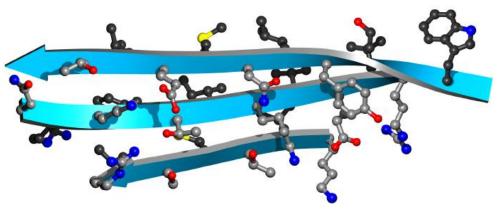


Proteins – secondary structure

\Box Types of typical β -structures


- β-sheets
- β-turns
- β-bulge
- Polyproline helices

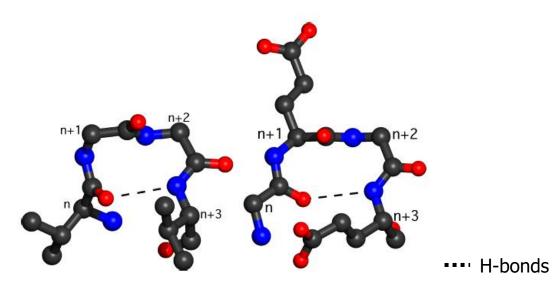
- Hydrogen bonding
 - Between adjacent chains



\Box Types of β -sheets

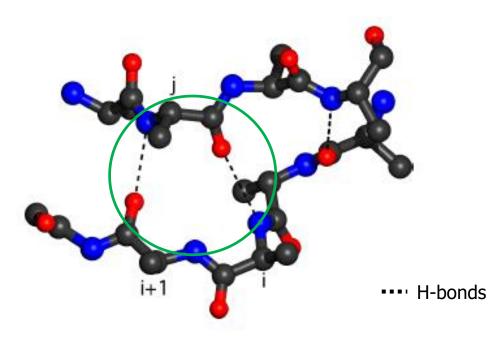
- Parallel
- Antiparallel (stronger)
- Mixed
- → Represented by ribbons
 with arrows indicating the sequence direction

•••• H-bonds

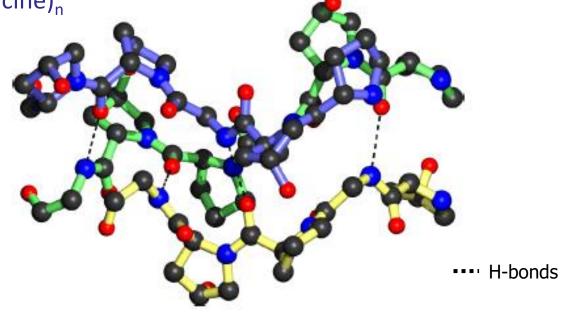

□ Side-chains

- Towards the sides of
 - the sheets

Proteins – secondary structure


β-turns

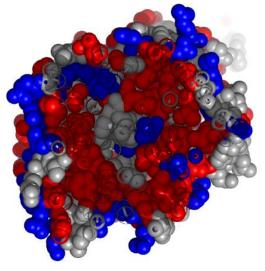
- Short structures (4-5 residues)
- Connects two β-strands
- Ideally H-bond between backbone of n and n+3 residues
- Often includes glycine or proline on specific positions


β-bulge

- Frequently occurs in antiparallel β-sheets
- Disrupts ideal H-bonding pattern
- Increases twists of a sheet

Polyproline helices

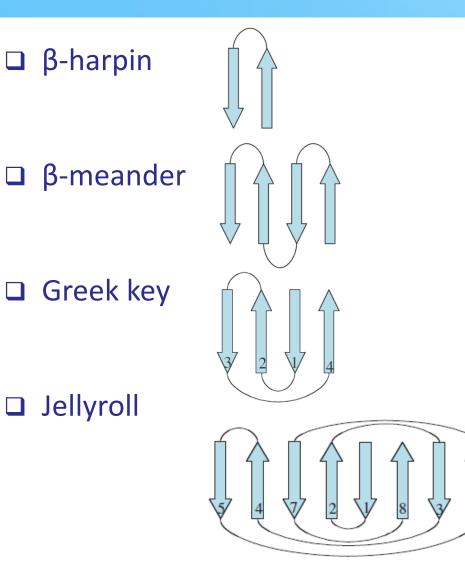
- Typical in collagen and other strong fibers
- Left-handed triple-stranded helix (unlike most of other helices)
- Composed of three chains of repetitive sequence (Proline-Hydroxyprolin-Glycine)_n



□ Global three-dimensional structure of protein

Governed mainly by hydrophobic interactions involving

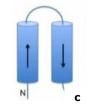
side chains of amino acid residues

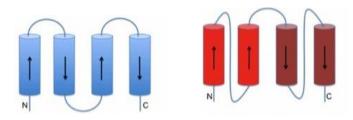


Proteins – tertiary structure

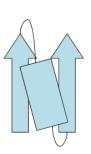
Tertiary structure

- Supersecondary structures (motifs)
 - Small substructures formed by several secondary structures
- Domain
 - Structurally (functionally) independent regions
 - Compact parts of structure around single hydrophobic core
 - Formed in separate folding unit (fold independently)
- Fold
 - General architecture of protein
 - Type of protein structure


Protein motifs

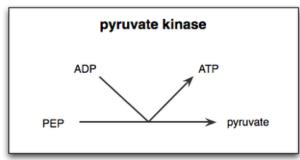

Proteins – tertiary structure

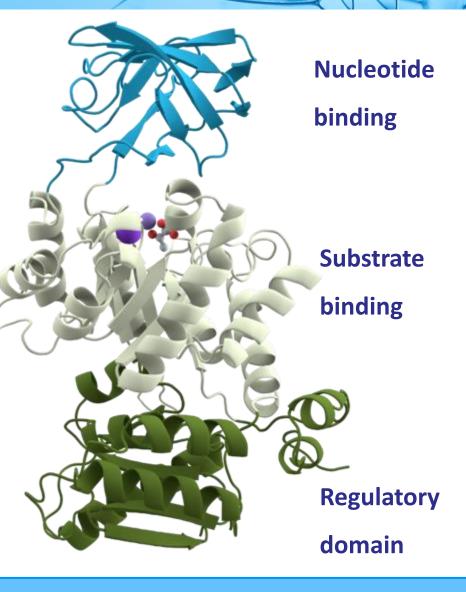
Protein motifs


□ Helix-turn-helix

Helix bundle

 \Box $\beta \alpha \beta$ unit

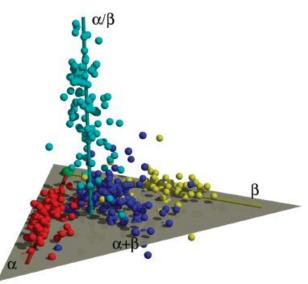



Protein domains

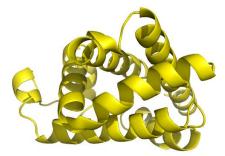
Parts of tertiary structure

- Separate folding
- Independent structure
- Usually up to 200 residues

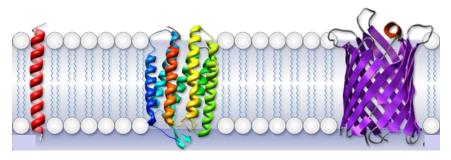
Pyruvate kinase in glycolysis



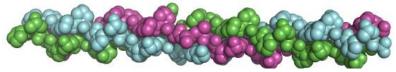
Proteins – tertiary structure


Protein folds

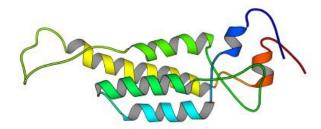
- □ Some folds are very common, some are rare
- Classification of folds
 - Biochemical
 - Globular, membrane, fibrous proteins, intrinsically disordered
 - Structural
 - all- α , all- β , α/β and $\alpha+\beta$ proteins
- Number of folds
 - Currently: 1,195 (SCOP) vs 1,373 (CATH)
 - Theoretical maximum: 10,000



Biochemical classification of folds

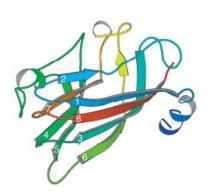

□ Globular proteins

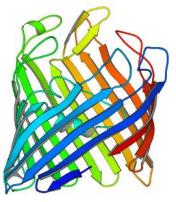
Membrane proteins


G Fibrous proteins

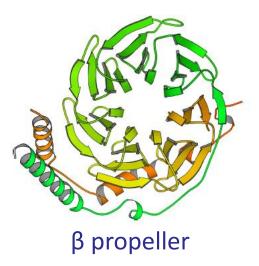
Proteins – tertiary structure

Structural classification of folds

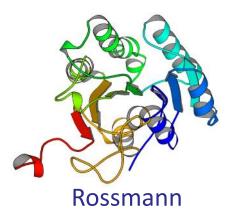

 \Box All- α (entirely α -helices)

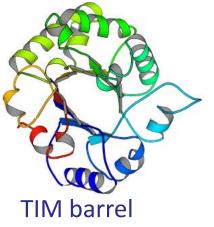


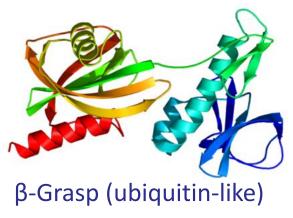
Globin-like


Δ All- β (entirely β -strands)

Jellyroll

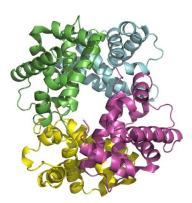



 β barrel


Structural classification of folds

 \Box α/β (sequence alternates between α -helices and β -strands)

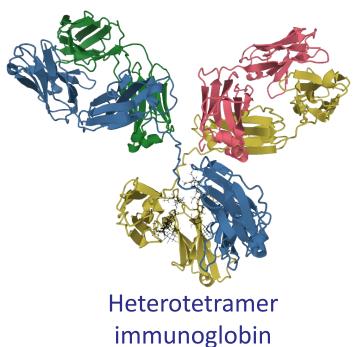
 \Box $\alpha+\beta$ (α -helices and β -strands occur separately in sequence)

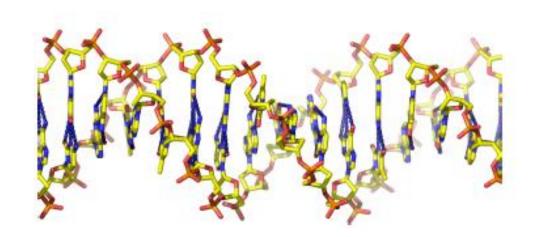

Proteins – tertiary structure

Quaternary structure

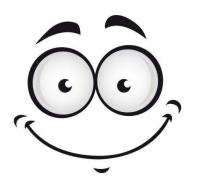
Association of several protein chains

(monomers/subunits) into oligomers (multimers)


- Homomeric protein from identical monomers
- Heteromeric protein from different types of monomers

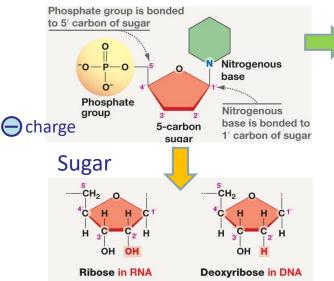


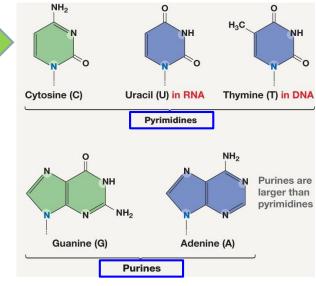
Heterodimer tryptophan synthase



Proteins – quaternary structure

Nucleic acids

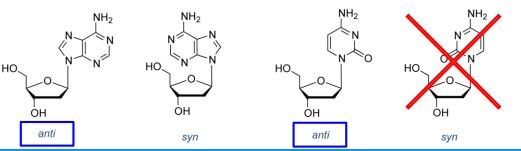

Structure of nucleic acids...


Nucleotides

Composition

Nucleotide

Nitrogenous base



PhosphatePentose sugar

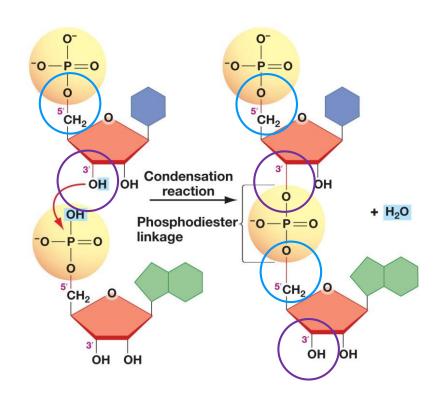
Heterocyclic base

DNA bases: A, G; T, C
RNA bases: A, G; U, C

Rotation about glycosidic bond

The *anti* conformation is dominant in DNA with rare exceptions

Nucleic acids – basic building blocks


□ Linear chain of nucleotides (oligonucleotides or

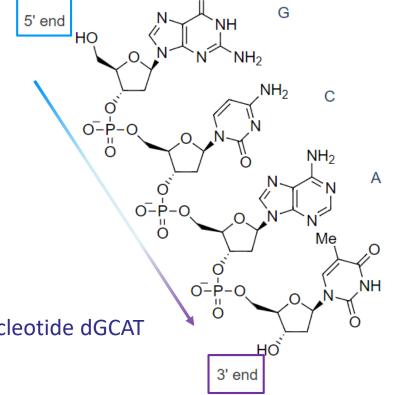
polynucleotides)

CGCGAATTCGCG

Sugar-phosphate backbone

- Covalent character
- Phosphodiester bond
- From 5'-end to 3'-end

□ Linear chain of nucleotides (oligonucleotides or

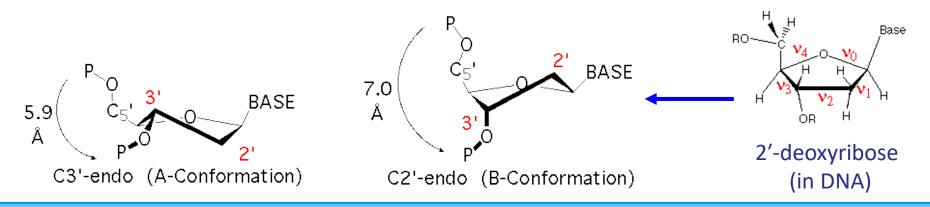

polynucleotides)

CGCGAATTCGCG

Sugar-phosphate backbone

- Covalent character
- Phosphodiester bond
- From 5'-end to 3'-end

oligonucleotide dGCAT


Т

Sugar-phosphate backbone

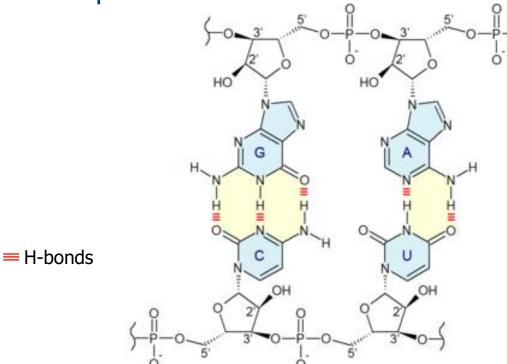
Very flexible backbone

Six torsion angles

- \Box Ribose is not planar \rightarrow sugar puckering
 - Denotes the phosphate-phosphate proximity
 - Two main types of conformation

To base

H'(5')


Nucleotide

H(5')

Secondary structure

□ Local interactions between nucleotide bases

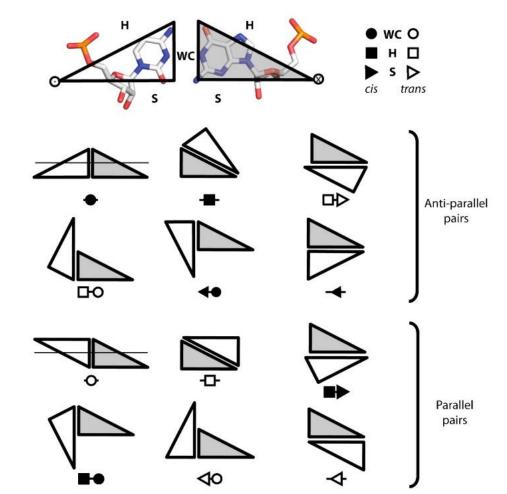
 \rightarrow Base pairs

DNA base pairs:
 Adenine - Thymine

Cytosine - Guanine

RNA base pairs:

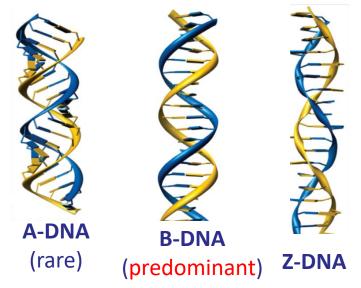
Adenine - Uracil


Cytosine - Guanine

Complementarity due to hydrogen bonds

Secondary structure

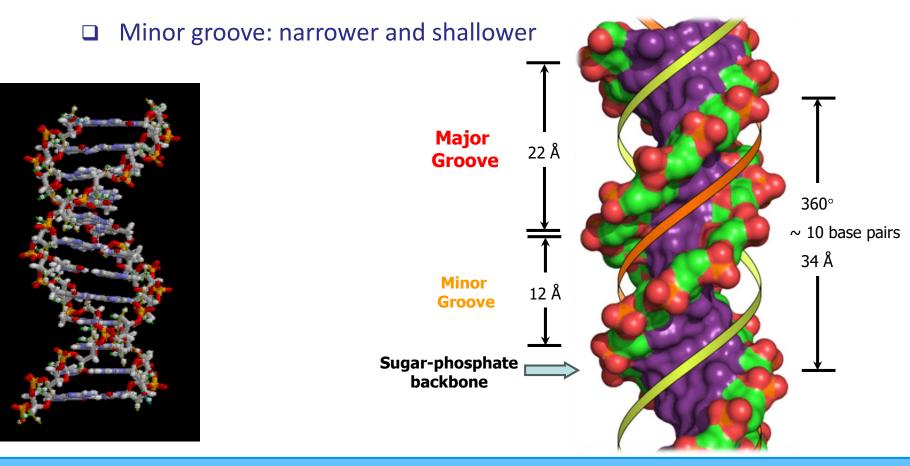
□ Leontis /Westhof classification


- Three base-paring edges
 - Watson-Crick (WC)
 - Hoogsteen (H)
 - Sugar (S)
- 12 types of base-paring

Tertiary structure of DNA

- Overall three-dimensional arrangement and folding
- □ Three types: A-DNA, B-DNA, Z-DNA
- B-DNA is the most common

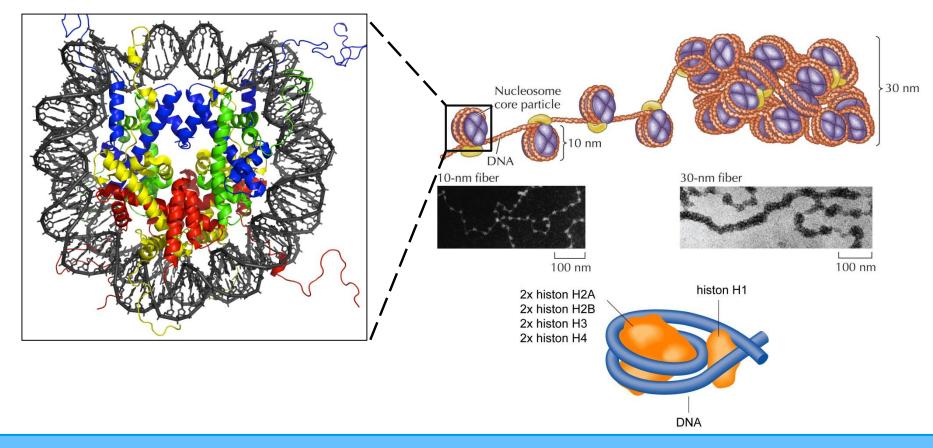
(described by Watson & Crick)


Туре	A-DNA	B-DNA	Z-DNA
Helix sense	Right	Right	Left
Bases per turn	11	10.5	12
Helical rise per nucleotide (Å)	2.6	3.4	3.7
Sugar pucker	C3'-endo	C2'-endo	C2'-endo C3'-endo

Nucleic acids – tertiary structure of DNA

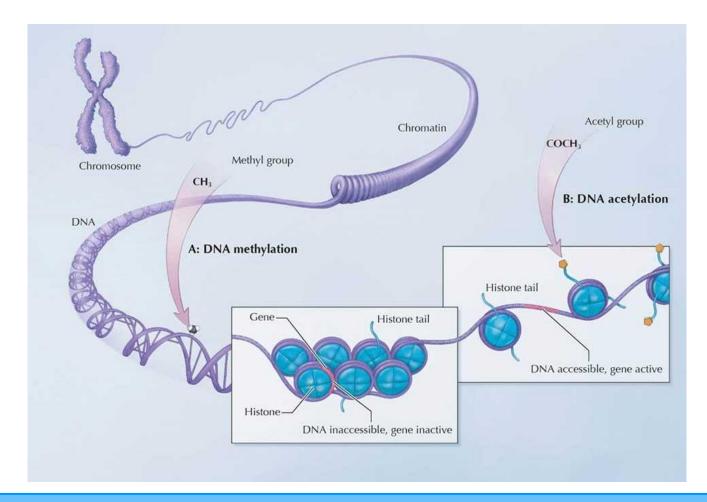
Tertiary structure of DNA

□ Grooves: crucial for DNA-protein interactions


□ Major groove: wide and deep – where most proteins interact

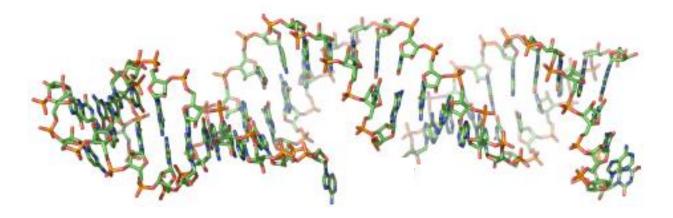
Nucleic acids – tertiary structure of DNA

Higher structures of DNA


Quaternary structures - with support of proteins

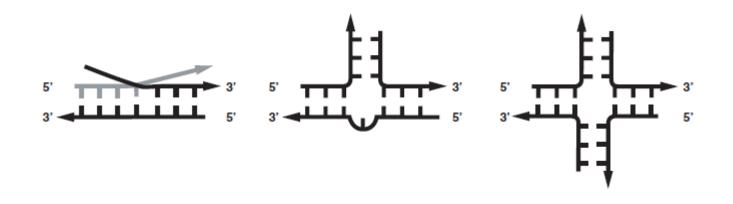
Nucleic acids – higher structures of DNA

Higher structures of DNA


Quaternary structures - with support of proteins

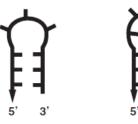
Nucleic acids – higher structures of DNA

□ Most common form: A-RNA helix (similar to A-DNA)

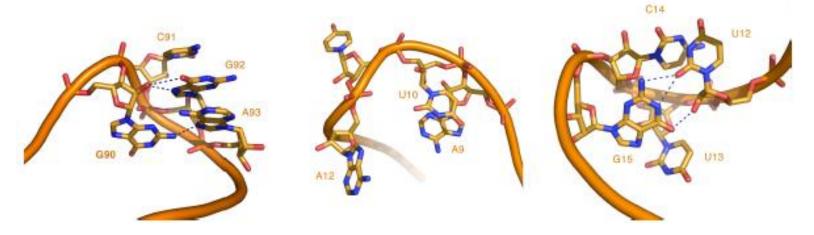


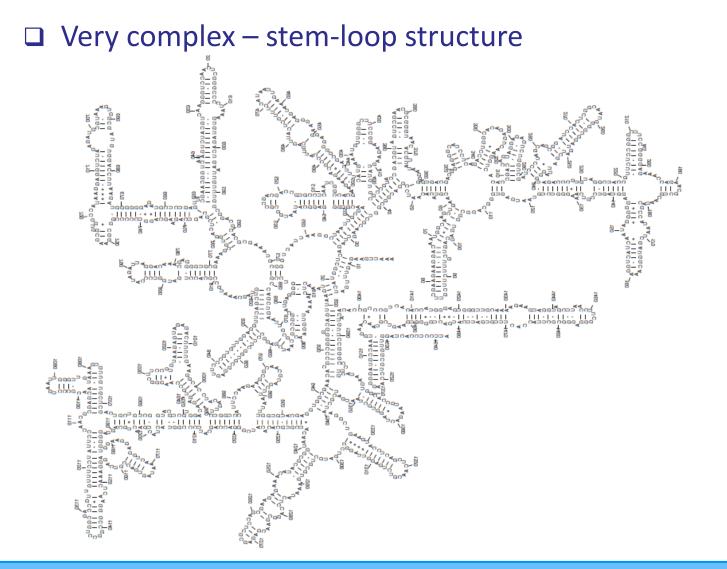
Nucleic acids – secondary structure of RNA


Junctions


- Regions connecting two or more stems
- Two-stem, three-stem and four-stem junction

□ Harpin loops

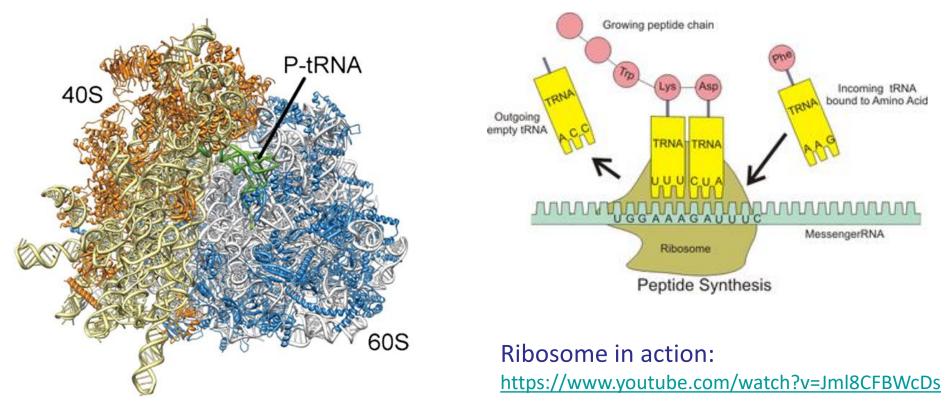

Sequence inversely self-complementary
 GGCUGGCUGUUCGCCAGCC



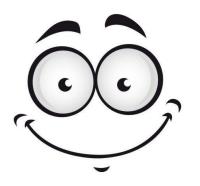
Many subtypes - e.g.: GNRA, ANYA, UNCG tetraloops

Nucleic acids – secondary structure of RNA

Tertiary structures of RNA


Phenylalanine Group I intron A-RNA Hammerhead Guanine dodecamer transfer RNA ribozyme ribozyme riboswitch

Nucleic acids – tertiary structures of RNA


Quaternary structure of RNA

Association of several chains of RNA

- Frequently joined with proteins
- Eukaryotic ribosome ~ 6800 nt, 79 proteins

Structural databases?

Primary structural databases

- Worldwide Protein Data Bank (wwPDB) <u>http://www.wwpdb.org/</u>
- RCSB Protein Data Bank (RCSB PDB) http://pdb.rcsb.org
- Nucleic Acid Knowledgebase (Nucleic Acid Database) <u>https://www.nakb.org/</u>
- Biological Magnetic Resonance Data Bank (BMRB) <u>https://bmrb.io/</u>
- Electron Microscopy Data Bank (EMDB)

http://www.emdatabank.org/

Cambridge Structural Database (CSD)

http://www.ccdc.cam.ac.uk/products/csd/

BPDBe Protein Data Bank in Europe

... More details in lesson 4!

Structural data formats

Different file formats used to represent 3D structure data

- PDB
- mmClF
- PDBML
- MOL2
- ...

The spatial 3D coordinates and other information are recorded for each atom

- Designed in the early 1970s first entries of PDB database
- □ Rigid structure of 80 characters per line, including spaces
- Still the most widely supported format

structure _	HEADER TITLE SOURCE	SI	RUCTU	JRE (OF	-CARBON) DEOXYRIB			OTOLYASI	JL-95	1 DNP	
annotation	KEYWDS KEYWDS	DN	2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI DNA REPAIR, ELECTRON TRANSFER, EXCITATION ENERGY TRANSFER, 2 LYASE, CARBON-CARBON									
	ATOM	21	ND1	HIS	А	3	55.365	27.866	62.971	1.00	11.07	N
	ATOM	22	CD2	HIS	А	3	57.200	28.354	61.894	1.00	13.12	C
	ATOM	23	CE1	HIS	А	3	56.124	26.783	62.981	1.00	13.03	C
	ATOM	24	NE2	HIS		3	57.243	27.052	62.334	1.00	8.19	N
	ATOM	25	N	LEU		4	55.580	32.694	59.656		12.61	N
amino acid field	ATOM	26	CA	LEU		4	54.799	33.803	59.113	1.00	11.56	C
	ATOM	27	С	LEU		4	53.552	33.269	58.374	1.00	7.76	С
	ATOM	28	0	LEU		4	53.650	32.363	57.532	1.00	6.99	0
	ATOM	29	CB	LEU		4	55.656	34.683	58.174	1.00	9.03	C
	ATOM	30	CG	LEU		4	54.946	35.887	57.518	1.00	2.00	c
	ATOM	31	CD1	LEU	А	4	54.623	36.920	58.550	1.00	6.21	с
	HETATM 7	7641	AN7	FAD	в	472	27.855	78.556	29.073	1.00	4.55	N
cofactor		7642		FAD		472	28.524	78.026	27.955	1.00	2.00	ĉ
filed	HETATM 7			FAD			29.848	77.609	27.724	1.00	3.40	C
	HETATM 7			FAD			30.787	77.757	28.664	1.00	6.22	N
	,	/	/	/	Ι	/	_	~		I	\ \	
	atom numbe		/	idue ame		residue number	Х,	y, z coordi	nates	occupan	cy temperature factor	atom type
		aton nam				ptide entifier						

Structural data formats – PDB format

- Atomic coordinates
- Chemical and biological features
- Experimental details of the structure determination
- Structural features
 - Secondary structure assignments
 - Hydrogen bonding
 - Biological assemblies
 - Active sites
 - • •
- <u>https://www.wwpdb.org/documentation/file-format-content/format33/v3.3.html</u>
- <u>https://www.cgl.ucsf.edu/chimera/docs/UsersGuide/tutorials/pdbintro.html</u>

Structural data formats – PDB format

- Advantages
 - Widely used → supported by majority of tools
 - Easy to read and easy to use
 - Can be manually edited

\rightarrow Suitable for accessing individual entries

- Disadvantages
 - Potential inconsistency between individual PDB entries as well as

PDB records within one entry

Ex: different residue numbering in SEQRES and ATOM sections

\rightarrow Not suitable for computer extraction of information

Primary sequence	-	SEQRES SEQRES	1 2	39 39		ASP GLY	ASN I ALA A									
Atoms and residues in the file		АТОМ АТОМ АТОМ АТОМ	1 2 9 10	N CA N CA	MET MET PHE PHE	5 5 6	41.4 40.9 39.6 39.1	19 27	13. 14.	897 262 840 440	15 14	.262 .600 .228 .964	1.0 1.0 1.0	00 4 00 4	8.61 7.70 8.66 5.33	

Structural data formats – PDB format

Disadvantages

Absolute limits on the size of certain items of data
 Ex.: max. number of atom records limited to 99,999; max. number of chains limited to 26, etc.

 \rightarrow Large systems such as the ribosomal subunit must be divided into multiple PDB files

→ Not suitable for analysis and comparison of experimental and structural data across the entire database

mmCIF format

- □ Macromolecular crystallographic information file (mmCIF)
- Developed to handle increasingly complicated structural data
- Each field of information is explicitly assigned by a tag and linked to other fields through a creatial syntax

linked to other fields through a special syntax

PDB HEADER PLANT SEED PROTEIN 11-OCT-91 1CBN

mmCIF	_struct.entry_id '1CBN'
	_struct.title 'PLANT SEED PROTEIN'
	_struct_keywords.entry_id '1CBN'
	_struct_keywords.text 'plant seed protein'
	_database_2.database_id 'PDB'
	_database_2.database_code '1CBN'
	_database_PDB_rev.rev_num 1
	_database_PDB_rev.date_original '1991-10-11'

Structural data formats – mmCIF format

mmCIF format

- Advantages
 - Easily parsable by computer software
 - Consistency of data across the database
- \rightarrow Suitable for analysis and comparison of experimental and
- structural data across the entire database

Disadvantages

- Difficult to read
- Rarely supported by visualization and computational tools

 \rightarrow Not suitable for accessing individual entries

- Protein Data Bank Markup Language (PDBML)
- □ Extensible Markup Language (XML) version of PDB format

```
<?xml version="1.0" encoding="UTF-8" ?>
<PDBx:datablock datablockName="EXAMPLE"
  xmlns:PDBx="http://deposit.pdb.org/pdbML/pdbx-v1.000.xsd"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://deposit.pdb.org/pdbML/pdbx-v1.000.xsd
           pdbx-v1.000.xsd">
  <PDBx:entity polyCategory>
      <PDBx:entity poly entity id="1">
        <PDBx:type>polypeptide(L)</PDBx:type>
         <PDBx:nstd linkage>no</PDBx:nstd linkage>
         <PDBx:nstd monomer>no</PDBx:nstd monomer>
         <PDBx:pdbx seq one letter code>
         DIVLTOSPASLSASVGETVTITCRASGNIHNYLAWYQQKQGKSPQLLVYYTTTLADG
         VPSRFSGSGSGTOYSLKINSLOPEDFGSYYCOHFWSTPRTFGGGTKLEIK
         </PDBx:pdbx seq one letter code>
         <PDBx:pdbx seq one letter code can>
         DIVLTOSPASLSASVGETVTITCRASGNIHNYLAWYOOKOGKSPOLLVYYTTTLADG
         VPSRFSGSGSGTQYSLKINSLOPEDFGSYYCOHFWSTPRTFGGGTKLEIK
         </PDBx:pdbx seg one letter code can>
      </PDBx:entity poly>
  </PDBx:entity polyCategory>
</PDBx:datablock>
```

References

- Gu, J. & Bourne, P. E. (2009). Structural Bioinformatics, 2nd Edition,
 Wiley-Blackwell, Hoboken.
- Liljas, A. *et al.* (2009). Textbook Of Structural Biology, World Scientific
 Publishing Company, Singapore.
- Schwede, T. & Peitsch, M. C. (2008). Computational Structural Biology: Methods and Applications, World Scientific Publishing Company, Singapore.
- Schaeffer, R.D & Daggett, V. (2011). Protein folds and protein folding.
 Protein Engineering, Design & Selection 24:11–19.