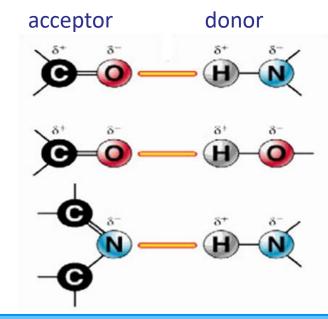


Protein folding, stability and dynamics

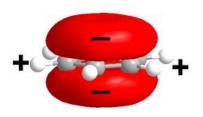
Outline

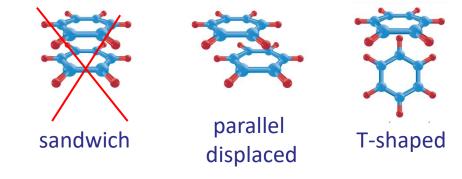
- Revisions
- Protein folding
- Protein stability
- Protein dynamics


Revisions: molecular interactions

- Covalent interactions
 - sharing of electrons
 - under standard condition very stable
 - primary structure of proteins
- Non-covalent (weak) interactions
 - electrostatic interactions
 - polar interactions
 - non-polar interactions
 - secondary, tertiary and quaternary structure of proteins

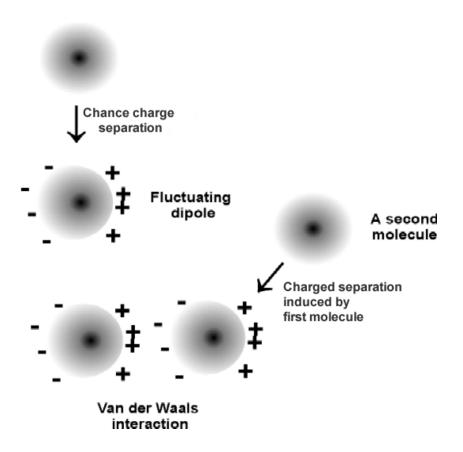
- □ Charge-charge interactions
 - charged residues Arg, Lys, Glu, Asp and His (low pH)
 - Iong-range interaction decrease with r²
 - environment dependent
 - permitivity (ε):
 - 1 vacuum
 - 2-20 interior of proteins, membranes
 - 80 bulk water -> water shields the chares form each others
 - salt concentration counter ions close to charged residues
 - pH change in charge of molecule (His)


Revisions: polar interactions

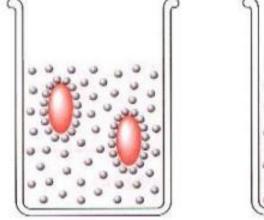

- □ Hydrogen bonds (H-bonds)
 - donor and acceptor atoms sharing hydrogen
 - polar residues Ser, Thr, Asn, Gln, Cys, Trp, Tyr and His (high pH)
 - charged residues Arg, Lys, Glu, Asp and His (low pH)
 - governs formation of secondary structure
 - H-bond distance: 2.8-3.4 Å

Revisions: polar interactions

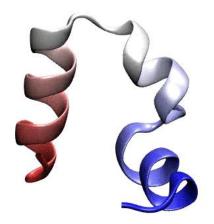
- **\Box** Aromatic (π - π) interactions
 - attractive interaction between aromatic rings
 - aromatic residues Phe, Trp, Tyr and His
 - distance of centre of mass about 5 Å



Molecular interactions - polar


Revisions: non-polar interactions

- van der Waals (vdW) interactions
 - between any two atoms -> all residues
 - short-range interactions
 - negligible beyond 5 Å
 - tertiary structure


Revisions: non-polar interactions

- Hydrophobic interactions
 - hydrophobic residues Phe, Pro, Met, Leu, Ile, Val, Ala, and possibly also Tyr and Trp
 - entropic origin water molecules ordered around hydrophobic residues -> unfavorable
 - hydrophobic packing -> release of some ordered water ->
 favorable increase of entropy
 - tertiary structure

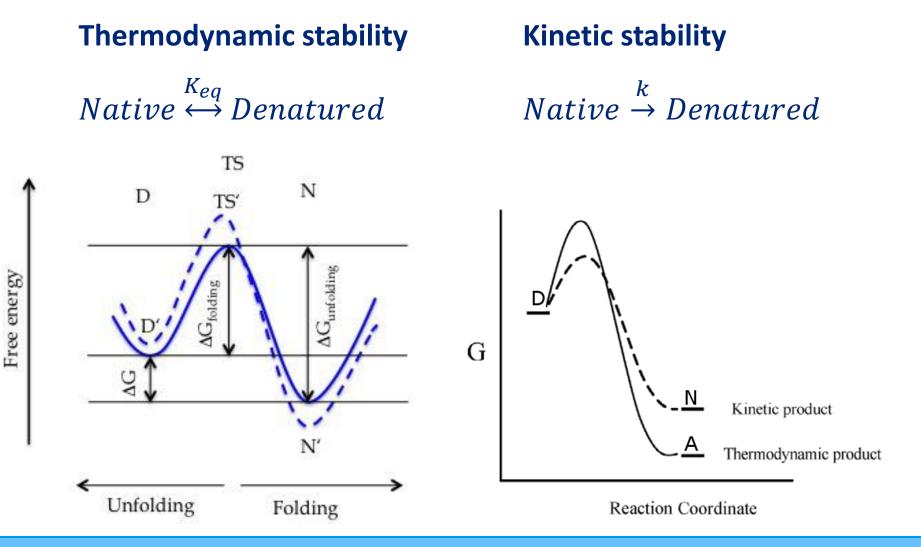
Protein folding

- Levinthal's paradox
- Anfinsen's thermodynamic hypothesis
- Mechanisms of protein folding
- Energetics of protein folding
- Database of protein folding

Levinthal's paradox

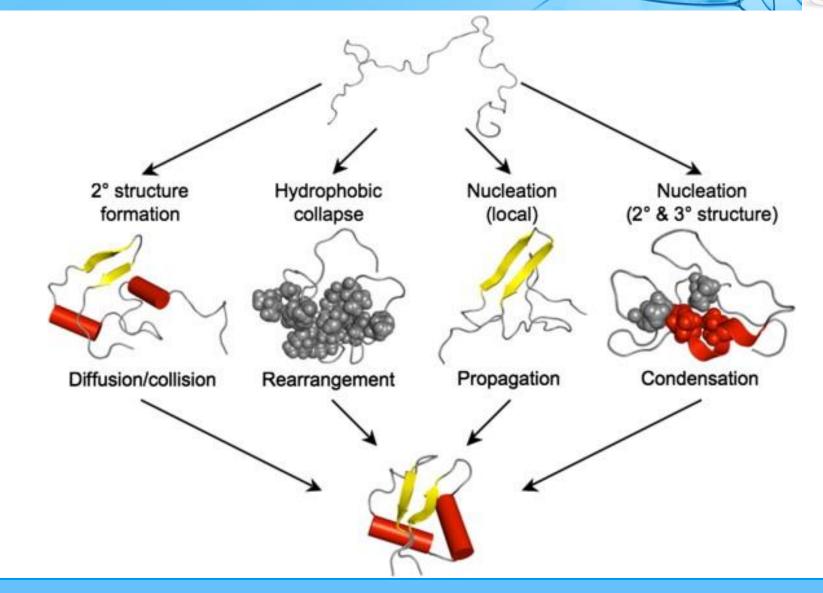
- **Cyrus Levinthal**
 - 1968 impossibility of random folding
 - random folding
 - 100 residue protein (average sized)
 - 3 conformation per residue (many more)
 - 0.1 ps sampling time per conformation (much longer)
 - folding time = $3^{100}*10^{-13}$ s $\approx 5*10^{34}$ s \approx
 - 1 634 251 397 552 039 990 billions of years
- Experimental folding rates
 - 1 ms to 10 min

Anfinsen's thermodynamic hypothesis


Christian Anfinsen

- 1973 protein folding *in vitro*
- refolding of ribonuclease

Findings


- native structure of a protein is the thermodynamically stable structure
- folding depends only on the amino acid sequence and on the conditions of solution, and not on the kinetic folding route

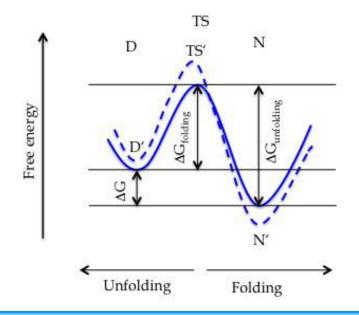
Thermodynamic and kinetic stability

Protein folding – Thermodynamic and kinetic stability

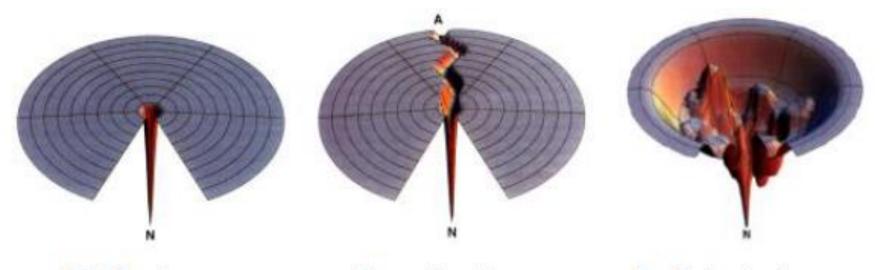
Mechanisms of protein folding

- Nucleation-growth (propagation) model
 - continuous growth of tertiary structure from initial nucleus of local secondary structure
 - it did not account for folding intermediates -> model dismissed

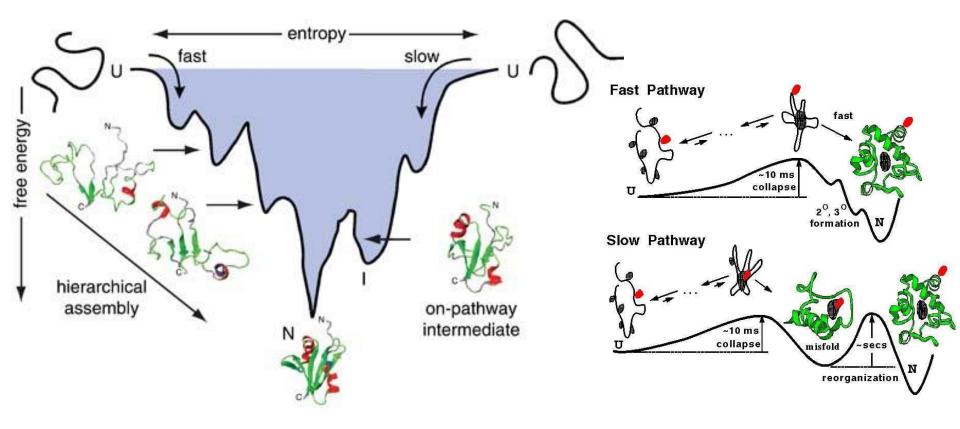
Mechanisms of protein folding

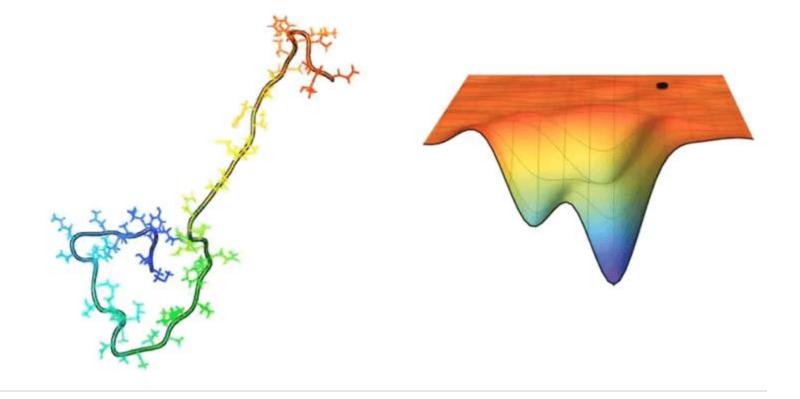

Framework model

- secondary structure folds first -> coalescence of secondary structural units to the native protein
- **Hydrophobic collapse model**
 - compaction of the protein -> folding in a confined volume -> narrowing the conformational search to the native state


Nucleation-condensation model

- concerted & cooperative secondary and tertiary structure formation
- transition state resembles distorted form of the native structure
- the least distorted part called folding nucleus or molten globule


- **□** Free energy of folding ($\Delta G_{fold} = \Delta H T.\Delta S$)
 - protein more structured -> $\Delta S \downarrow$ unfavorable
 - solvent less structured -> Δ S \uparrow favorable
 - hydrophobic interactions are driving "force"
 - more non-covalent interactions -> $\Delta H \downarrow$ favorable


Protein folding – energetics

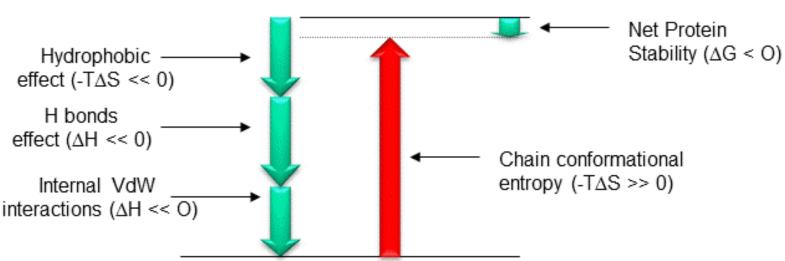
Flat landscape (Levinthal paradox) Tunnel landscape (discrete pathways) Realistic landscape ("folding funnel")

Protein folding – energetics

Protein stability

- Basics of protein stability
- Database of protein stability

Basics of protein stability

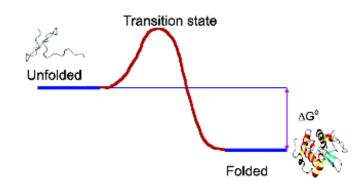


Tertiary structure of protein

- sum of non-covalent weak interactions vs conformational entropy
- folded protein = thermodynamic compromise
- folded protein marginally more stable than unfolded (10-80 kJ/mol)

Thermodynamics of Protein Folding

D <==> N



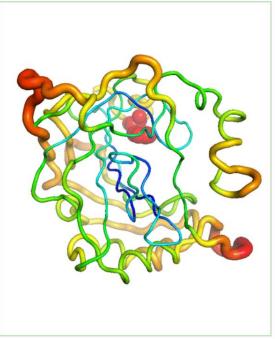
Basics of protein stability

D Tertiary structure of protein

- sum of non-covalent weak interactions vs conformational entropy
- folded protein = thermodynamic compromise
- folded protein marginally more stable than unfolded (10-80 kJ/mol)

- Weak interactions are frequently disrupted
 - denaturation disrupted bonds replaced by bonds with solvent
 - dynamics disrupted bonds reformed between protein atoms

ProTherm


- https://www.iitm.ac.in/bioinfo/ProTherm/index.html
- set of 746 unique proteins and 311 proteins with mutants
- numerical data of thermodynamic parameters for wild type and mutant proteins
- Data
 - Gibbs free energy change, enthalpy change, heat capacity change, transition temperature
 - secondary structure and accessibility for wild type residues
 - experimental conditions, methods and activity information

ProThermDB MME BROWSE STATISTICS TUTORIAL UPLOAD RELATED RESOURCES DOWNLOADS CITE US CONTACT US

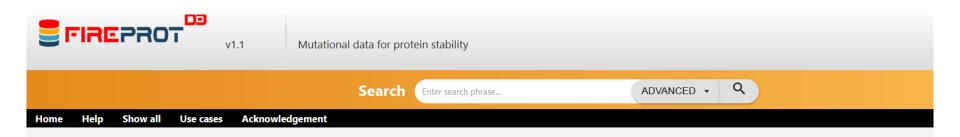
OVERVIEW

ProThermDB, thermodynamic Database for Proteins and Mutants (ProThermDB) contains more than 32,000 data of several thermodynamic parameters such as melting temperature, free energy obtained with thermal and denaturant denaturation, enthalpy change, and heat capacity change along with experimental methods and conditions, sequence, structure, and literature information. Besides, the current version of the database includes ~0.12 million thermodynamic data obtained for different organisms and cell lines, which are determined by recent high throughput proteomics techniques using whole-cell approaches. In addition, we provided a graphical interface for the visualization of mutations at sequence and structure levels. ProThermDB is cross-linked with other relevant databases, PDB, UniProt, PubMed, etc.

ProThermDB can be queried through the search options by giving UniProt ID, PDB ID, protein name, mutation, experimental conditions, and author name, etc. Users can check our tutorial to get help in searching the database. Fill the download form provided to download the entire dataset.

WHAT'S NEW

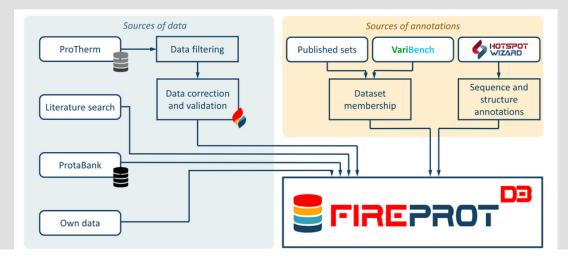
- ✤ ProThermDB is now available
- ★ 7000+ Mutation data are added to ProThermDB
- * New features are included in the ProThermDB


prothermdb/index.html

Database of protein stability					
	ProTh	PTTER BROWSE STATISTICS TUTC	ORIAL UPLOAD RELATED RESOURCES DOWNLOADS CITE US CONTACT US		
		SEARCH OPTIONS	DISPLAY OPTIONS		
	Entry 27543		Protein information		
	UniProt	P00918	🗹 Entry 🖾 Protein 🖾 UniProt 🖾 Mutation (UniProt)		
	PDB Code	12CA	Source PDB Mutation (PDB) Sec Str		
	Protein	Carbonic anhydrase 2	🗹 ASA 🛛 EC Number		
	Source Homo sapiens (Humar		Experimental conditions		
	Mutation type	Any ~ Any ~ to Any ~	PH T Deasure Dethod		
	Sec Str Helix Sheet Turn Coil O Any O Burried O Partially Burried O Exposed O ASA 0 To 254		□ Buffer_Name □ Buffer_conc □ Ion_Name □ Ion_conc		
			Thermodynamic parameters		
	рН (0-13)	0 To 13	Ω Τ _m Ω ΔΤ _m Ω ΔΗ Ω ΔCp		
	Т	-16 To 134	$\Box_{\Delta H \vee H} \Box_{\Delta G} \boxtimes_{\Delta \Delta G} \Box_{m}$ $\Box_{C_{m}} \Box_{\Delta G}^{H2O} \boxtimes_{\Delta \Delta G}^{H2O} \boxtimes State \boxtimes Reversibility$		
	Measure		\Box C _m \Box Δ G ^{H2O} \bowtie Δ \DeltaG ^{H2O} \bowtie State \bowtie Reversibility		
		□ Others	Literature		
	Method	Thermal GdnHCl Urea Others	🗹 PubMed Id 🛛 Key Words 🖓 Reference 🖓 Author		
	Tm	-52 To 220	□ Remarks		
	ΔTm	-286 To 72	Select All		

Entry	y Protein Source	Mutation	Tm	Measure	Reversibility
2	Ribonuclease HI Escherichia coli	WILD	49.80	CD	YES
<u>6</u>	Ribonuclease HI Escherichia coli	WILD	52.00	CD	YES
<u>7</u>	Ribonuclease HI Escherichia coli	K 91 R	49.80	CD	YES
<u>8</u>	Ribonuclease HI Escherichia coli	K 91 R	52.00	CD	YES
<u>9</u>	Ribonuclease HI Escherichia coli	D 94 E	49.80	CD	YES
<u>10</u>	Ribonuclease HI Escherichia coli	D 94 E	52.00	CD	YES
<u>11</u>	Ribonuclease HI Escherichia coli	K 95 G	49.80	CD	YES
<u>12</u>	Ribonuclease HI Escherichia coli	K 95 G	52.00	CD	YES
<u>13</u>	Ribonuclease HI Escherichia coli	K 95 A	49.80	CD	YES
<u>14</u>	Ribonuclease HI Escherichia coli	K 95 A	52.00	CD	YES
<u>15</u>	Ribonuclease HI Escherichia coli	K 95 N	49.80	CD	YES
<u>16</u>	Ribonuclease HI Escherichia coli	K 95 N	52.00	CD	YES
124	Ribonuclease HI Escherichia coli	WILD	53.00	CD	YES
<u>125</u>	Ribonuclease HI Escherichia coli	A 52 I	59.20	CD	YES
<u>126</u>	Ribonuclease HI Escherichia coli	A 52 V	58.50	CD	YES
127	Ribonuclease HI Escherichia coli	A 52 L	57.30	CD	YES
<u>128</u>	Ribonuclease HI Escherichia coli	A 52 C	55.50	CD	YES
<u>129</u>	Ribonuclease HI Escherichia coli	A 52 M	54.60	CD	YES
<u>130</u>	Ribonuclease HI Escherichia coli	A 52 F	51.50	CD	YES
<u>131</u>	Ribonuclease HI Escherichia coli	A 52 T	50.30	CD	YES
<u>132</u>	Ribonuclease HI Escherichia coli	A 52 Q	49.10	CD	YES
<u>133</u>	Ribonuclease HI Escherichia coli	A 52 E	48.00	CD	YES
<u>134</u>	Ribonuclease HI Escherichia coli	A 52 P	47.60	CD	YES
<u>135</u>	Ribonuclease HI Escherichia coli	A 52 S	47.20	CD	YES
<u>136</u>	Ribonuclease HI Escherichia coli	A 52 N	47.10	CD	YES
<u>137</u>	Ribonuclease HI Escherichia coli	A 52 D	46.90	CD	YES
<u>138</u>	Ribonuclease HI Escherichia coli	A 52 Y	45.40	CD	YES
<u>139</u>	Ribonuclease HI Escherichia coli	A 52 G	44.10	CD	YES
<u>140</u>	Ribonuclease HI Escherichia coli	A 52 H	41.20	CD	YES
<u>141</u>	Ribonuclease HI Escherichia coli	A 52 K	33.50	CD	YES

FireProtDB


- https://loschmidt.chemi.muni.cz/fireprotdb/
- numerical data of thermodynamic parameters for wild type and mutant proteins
- More than 16,000 experimental stability data on ~ 300 proteins
- Manual curation
- Data
 - Gibbs free energy change, enthalpy change, heat capacity change, transition temperature
 - experimental conditions and methods

FireProtDB is a comprehensive, manually curated database of the protein stability data for single-point mutants.

Proteins find their use in numerous biomedical and biotechnological applications. Naturally occurring proteins usually cannot withstand harsh industrial environments since they have evolved to function under mild conditions. Increasing protein stability is one of the key determinants of protein applicability. The predictive power of the current computational tools is compromised by the limited experimental data that would allow a rigorous training and testing.

This database combines the published datasets from ProTherm and ProtaBank, the data extracted from the recent literature, and the measurements collected in our laboratory. The annotations were obtained from VariBench and HotSpot Wizard. The graphical user interface is designed to facilitate both types of the expected use: (i) the interactive explorations of individual entries on the level of a protein or a mutation and (ii) the construction of highly customized, machine learning-friendly datasets using advanced searching and filtering.

FireprotDB search results

Export CSV							
Stabilizing Destabilizing Neutral							
Protein ↑	Curated 个	Mutation ↑	ΔΔG (kcal/mol) ↑	ΔTm (°C) ↑			
Halohydrin dehalogenase	*	E64A	-	1			
Halohydrin dehalogenase	*	\$22A	-	-0.5			
Halohydrin dehalogenase	*	N113H	-	-3.5			
Halohydrin dehalogenase	*	N113H	-	-2			
Halohydrin dehalogenase	*	D96H	-	-9			
Halohydrin dehalogenase	*	A29L	-	3			
Halohydrin dehalogenase	*	P253G	-	-0.5			
Halohydrin dehalogenase	*	P253G	-	-2.5			
Halohydrin dehalogenase	*	T134I	-	-1			
Halohydrin dehalogenase	*	T134I	-	0.5			

Protein dynamics

- Basics of protein dynamics
- Characteristics of protein motions
- Dynamics and protein function
- Approaches to study dynamics
- Databases of dynamics
- Protein dynamics in biology

Introduction to protein dynamics

□ Origin of dynamics – disruption of weak interactions by

- thermal kinetic energy (k_b.T)
- binding interactions (ligands or other proteins) induced fit

Protein atoms fluctuates around their average positions

- in tightly packed interior movement restricted
- near surface movement promoted by solvent movements
- -> proteins considered as "semi-liquids"

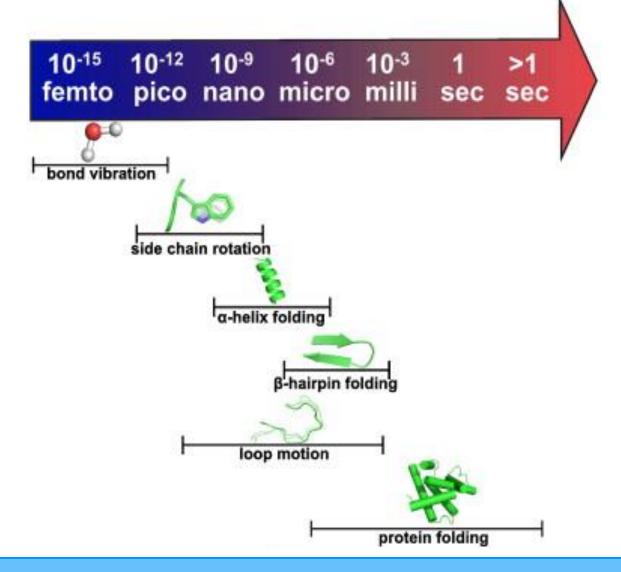
Divisions of protein motions

Type of motion	Moving moiety	Functionality
Local	atoms; side-chains	bond vibration; ligand flexibility; temporal diffusion pathways
Medium-scale	secondary structures	active site conformational changes; motion of hinge; peptide bond rotation;
Large-scale	domains	hinge facilitated domain movements; allosteric transition
Global	subunits	helix-loop transition; folding/unfolding

Amplitudes of protein motions

Fluctuations

- less than 1 Å
- Iocal motions


Collective motions

- 1-10 Å
- medium and large-scale motions

Triggered conformational changes

- more than 10 Å
- global motions

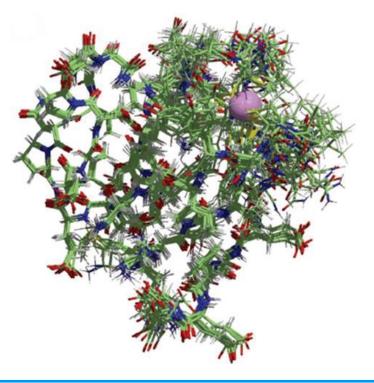
Time scales of protein motions

Protein dynamics – characteristics of protein motions

Time scales of protein motions

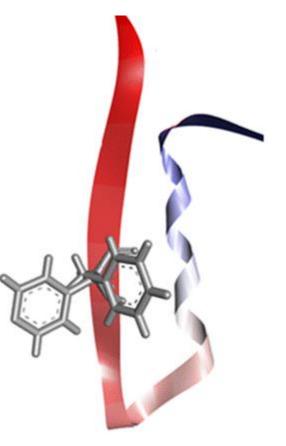
D Time scales governed by local environment

- interior motions coupled due to packing restraints
- surface no coupling of motions


- □ Example: aromatic ring flipping
 - can occur on ps time scale, but often observed on ms time scale
 - aromatic residues -> hydrophobic -> inside protein -> tightly packed
 - -> low probability of synchronized movement of surrounding atoms
 - -> prolonged time scale

Approaches to study dynamics

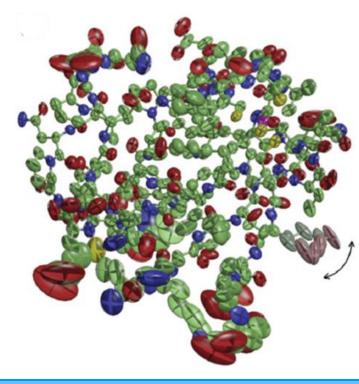
- □ NMR spectroscopy
- □ High resolution X-ray crystallography
- Computational
 - Normal mode analysis (NMA)
 - Molecular dynamics (MD)


NMR spectroscopy

- **Ensemble of possible low energy conformations**
- Directly shows possible amplitudes of motion
- Limited applicability to larger proteins
- Does not describe
 - very fast motions & transition states
 - time scales & energetics of motions

High resolution X-ray crystallography

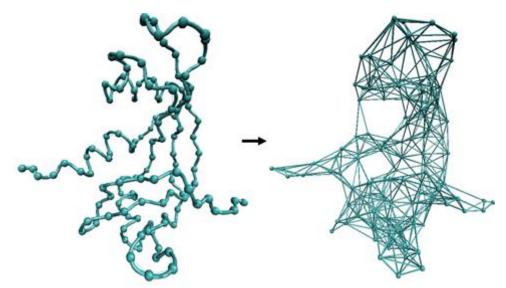
- Average low energy structure more conformations:
 - in one structure only if both are separated by barrier
 - in multiple structures



High resolution X-ray crystallography

Average low energy structure - more conformations:

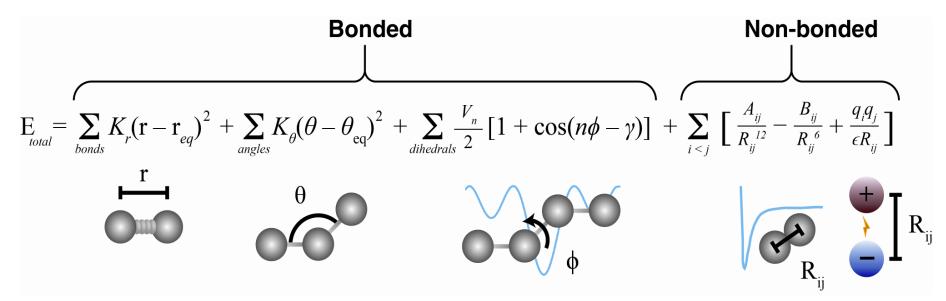
- in one structure only if both are separated by barrier
- in multiple structures
- Crystalline state
 - non-native contacts
 - artificially lower amplitudes of motions
- □ Range of fluctuations B-factors
- Does not describe
 - very flexible regions
 - collectiveness of motions
 - time scales & energetics of motions


Protein dynamics – approaches to study dynamics

Normal mode analysis

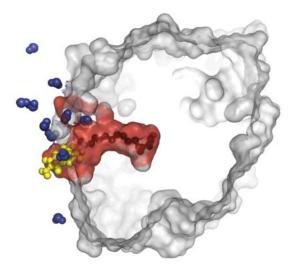
Principle

- motion of system as harmonic vibration around a local minimum
- Coarse-grained model, residues connected with springs
- Small number of low-frequency normal modes
 - shows directionality, collectiveness and sequence of global motions
- Does not describe
 - Iocal movements
 - amplitudes & time scales
 - energetics of motions

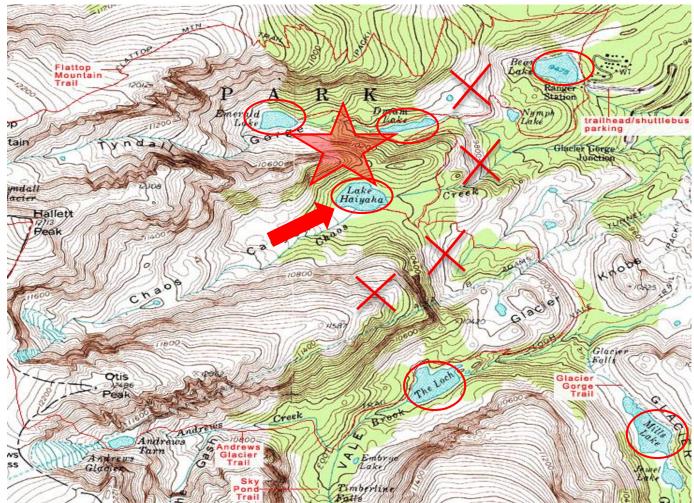

D Principle

- physical description of interactions within system (force field)
- Newton's laws of motions
- forces acting on all atoms due to all atoms
- small time-step ~ 2 fs

$$E_{total} = \sum_{bonds} K_r (\mathbf{r} - \mathbf{r}_{eq})^2 + \sum_{angles} K_{\theta} (\theta - \theta_{eq})^2 + \sum_{dihedrals} \frac{V_n}{2} \left[1 + \cos(n\phi - \gamma) \right] + \sum_{i < j} \left[\frac{A_{ij}}{R_{ij}^{12}} - \frac{B_{ij}}{R_{ij}^{6}} + \frac{q_i q_j}{\epsilon R_{ij}} \right]$$

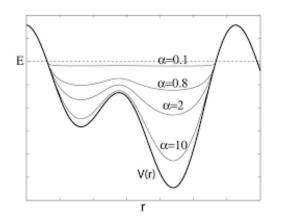

Principle

- physical description of interactions within system (force field)
- Newton's laws of motions
- forces acting on all atoms due to all atoms
- small time-step ~ 2 fs

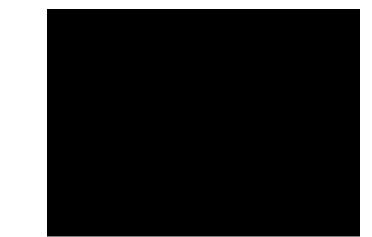


Principle

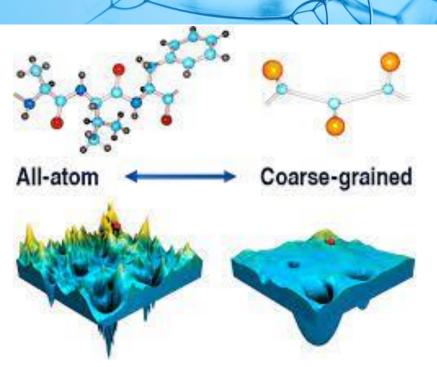
- physical description of interactions within system (force field)
- Newton's laws of motions
- Provides information on energetics, amplitudes and time scales of local motions on atomic level
- Does not describe
 - slower large scale motions (> ms)

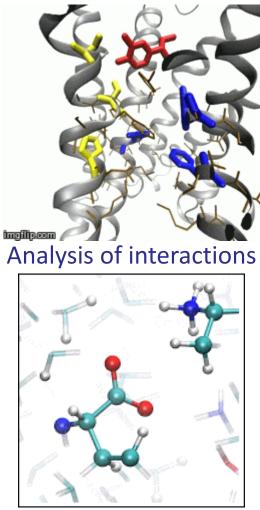


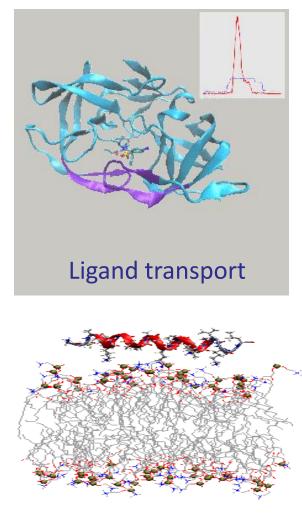
Introduction to structural biology


Classical MD

Enhanced sampling


- Adaptive sampling
- Metadynamics
- Accelerated MD
- Umbrella sampling




- Classical MD
- Enhanced sampling
 - Adaptive sampling
 - Metadynamics
 - Accelerated MD
 - Umbrella sampling

Coarse-grained molecular dynamics

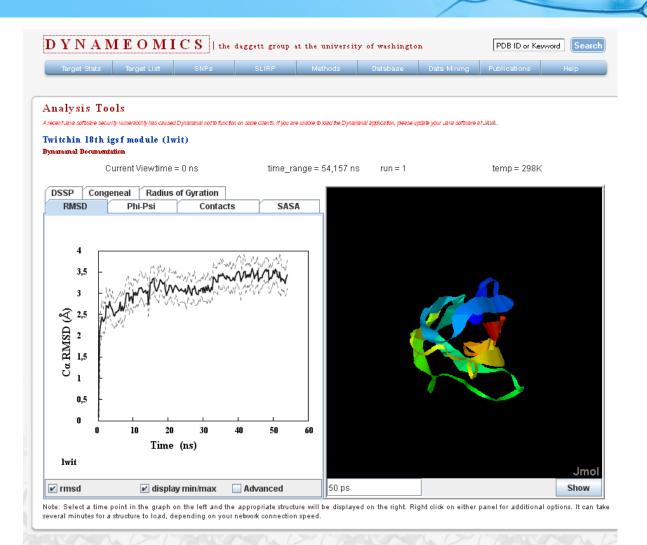
Ligand conversion

Interaction with membrane

Databases of dynamics

- Molecular Dynamics Extended Library (MoDEL)
- **Dynameomics**
- Molecular Movements Database (MolMovDB)
- ProMode-Elastic

- http://mmb.pcb.ub.es/MoDEL/
- >1,700 MD simulations of proteins representatives of all monomeric soluble structures in PDB
- 10 ns trajectories from MD simulations
- Data
 - pre-computed analysis of geometry, secondary structure, flexibility and inter-residue contacts
 - trajectory video
 - downloadable trajectories


MoDEL

<u>New Search</u> Quicl	k Search: by pdb code					useri	pass	word: HE
BROWSE BY ID LASS. APICAL I PDBSum MSD	DOMAIN OF THE CHAPER	ONIN FROM THERMO		ACIDOPHIL Program Ver Simulation ti	sion AM			
<u>SRS</u> MMDB	Time Slice:	1 - 10000	Total atoms			46547		500
<u>mmDB</u> JenaLib OCA	Structure Fragment:	(MET A1 - LYS A152)	~	Force field		rm99 tip3P		
Proteopedia		RMSd 🧐		Indie details	-			Æ.A.
<u>CATH</u> SCOP	GEOMETRY	Reference		Average		Experimental		Switch to 3D (Jmc
PQS	• RMSd	CA		64 ± 0.379		2.916 ± 2.895		Jmol animation
<u>CSA</u>	• <u>SASA</u>	c.		1 - 3.024) Å 69 ± 0.372		(1.022 - 4.128) Å 2.895 ± 0.677		trajectory video
<u>ProSAT</u> Whatcheck	• TM Score	Backbone		69 ± 0.372 12 - 2.988) Å		(1.025 - 4.109) Å		^{Bel} sw FlexServ
	• <u>Other</u>	Heavy	1.9	46 ± 0.354		3.783 ± 0.639		😰 Download trajecto
	SECONDARY STRUCT	URE	•	1 - 3.629) Å		(1.736 - 4.916) Å		
	 <u>Secondary str</u> 			14 ± 0.353 9 - 3.592) Å		3.732 ± 0.638 (1.702 - 4.866) Å		
	FLEXIBILITY & DYNAM	ICS	(271)					
	 <u>B Factors</u> Entropy 							
	 Principal Comp 	onents						
	Lindemann Co							
	INTERACTIONS & CO	VTACTS						
	 <u>Contacts</u> 							
						Do you cood	a custore-r	made analysis?
						Do you need		

Dynameomics

- www.dynameomics.org
- Image: MD simulations of over 800 proteins
- Longer trajectories (> 31 ns)
- Data
 - pre-computed analysis of RMSD, SASA, Phi-Psi, and contacts
 - trajectory video
 - visualization of individual snapshots
 - downloadable trajectories on request

Dynameomics

Daggett Group University of Washington College of Engineering Department of Bioengineering Sponsors Citing Dynameomics.org

University of Washing Ion, All rights reserved.

Protein dynamics – databases

MolMovDB

- http://www.molmovdb.org/
- Collection of over 178 molecular motions
- Based on morphing interpolation of motion between two experimental crystal structures
- Data
 - classification scheme for molecular motions
 - movements animations
 - hinge identification, structural analysis tools, references to experimental crystal structures
 - downloadable morphs as multi-model PDB

MolMovDB

molmovdb.org 👌 🧳 🧳 🛷 🛷 🛷 🛷 🛷 🔅

Molecular Movements Database

This outline presents the current database classified by any classification scheme for which data has been compiled. The original schema which separates motions by type of movement is defined on the help page. Thumbnail images appear for motions which have available movies, and link to the best morph for that particular protein.

Many more movies can be seen here, including structures not represented on this page. The movies page also allows searches for protein names or specific PDB IDs.

Switch to CATH survey

-	redominantly shear oteins for which two or more conformations are known
Ma	Adenosylcobinamide Kinase [motion] [morph]
*	Small G-protein Arf6 [motion] [morph]
1	Bacteriorhodopsin (bR) [motion] [morph]
8 8	Calbindin [motion] [morph]
А.	Dihydrofolate Reductase (DHFR) [motion] [morph]
	Histidine-Containing Phosphocarrier Protein [motion] [morph]

ProMode-Elastic

- https://pdbj.org/promode-elastic
- Normal mode analysis of PDB data on PDB database
- Data
 - fluctuation of atoms and dihedral angles
 - correlation between fluctuating atoms
 - distance map between residues
 - animation of fluctuating molecules
 - displacement vectors

ProMode-Elastic

PDBj

Database of normal mode analysis of PDB data using elastic network model in torsional angle space

Home What is ProMode-Elastic Help	
---------------------------------------	--

Japanese

No.of entries 1 03529

PDB code (4 chars) tcqw	Find Example 1a00
Select from a list of entries	· <u> </u>

Submission of your data to be analyzed.

Download of software

ProMode-Elastic is a database of normal mode analysis of **PDB** data. The normal mode analysis is performed by the program PDEETA we have developed. PDEETA is a program of Elastic-network-model based normal mode analysis in Torsional Angle space for PDB data. PDEETA can describe molecular structures with relatively smaller number of degrees of freedom, and take into computation not only proteins but also DNA RNA and ligand molecules (hydrogen atoms and water molecules are excluded currently to suppress the number of variables).

In each protein page its characteristic dynamic features can be observed through animation and displacement vectors on a viewer such as |V| and Jmol. We hope that a user learns more about dynamics from these pages than a static three-dimensional structure image of FDB data.

Reference: Hiroshi Wako and Shigeru Endo, "Ligand-induced conformational change of a protein reproduced by a linear combination of displacement vectors obtained from normal mode analysis," Biophys. Ohem. vol. 159, pp.257-266, 2011 [DOI:10.1016/jbpc.2011.07.004]

TOPICS

14/5/2012 ProMode-Elastic server has been moved to POBj, IPR, Osaka University. URL was also changed. 9/10/2010 ProMode-Elastic first version is released. 12/12/2009 ProMode-Elastic test version is released.

PDB ID= 1 a7r. Fv fragment of mouse monoclonal antibody Igg1-kappa d1.3 (light and heavy chains). The third lowest-frequency

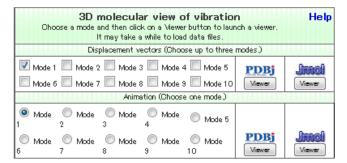
*Click on image for an enlarged image and more information.

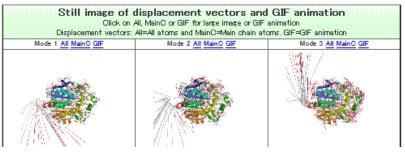
> PageTop | Back (Latest update 2012.07.20)

Copyright @ WASEDA Univ,Japan. All rights reserved. Emeil: promode@list.waseda.jp

Database of normal mode analysis of FDB data using elastic network model in torsional angle space

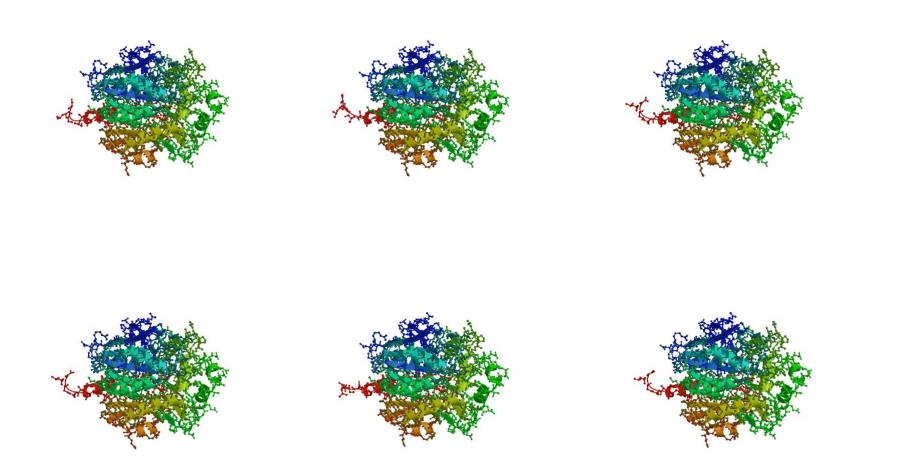
Home What is ProMode-Elastic Help


	Japa	nese
Go to PDB code	1cqw	Go
Select from a	list of entrie	s


1cov

HEADER	HYDROLASE 11-AUG-99 1CON	
TITLE	NAI COCRYSTALLISED WITH HALOALKANE DEHALOGENASE FROM A	<u></u>
TITLE	2 RHODOCOCCUS SPECIES	
COMPND	NOL_ID: 1;	
COMPND	2 NOLECULE: HALOALKANE DEHALOGENASE; 1-CHLOROHEXANE	
COMPND	3 HALIDOHYDROLASE;	
COMPND	4 CHAIN: A;	
COMPND	5 EC: 3.8.1.5;	
COMPND	6 ENGINEERED: YES;	*
COMPND	7 OTHER_DETAILS: COCRYSTALLIZED WITH NAI	
SOURCE	NOL ID: 1;	

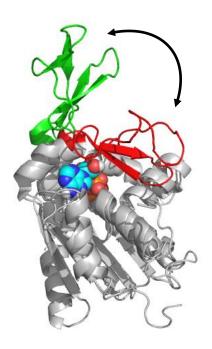
1cqw in other DBs >>> PDB PDBj


PDBsum SCOP CATH FSSP

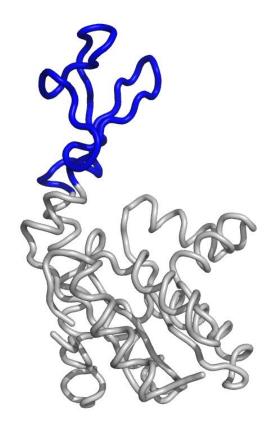
Protein dynamics – databases

ProMode-Elastic

Protein dynamics – databases


Protein dynamics in biology

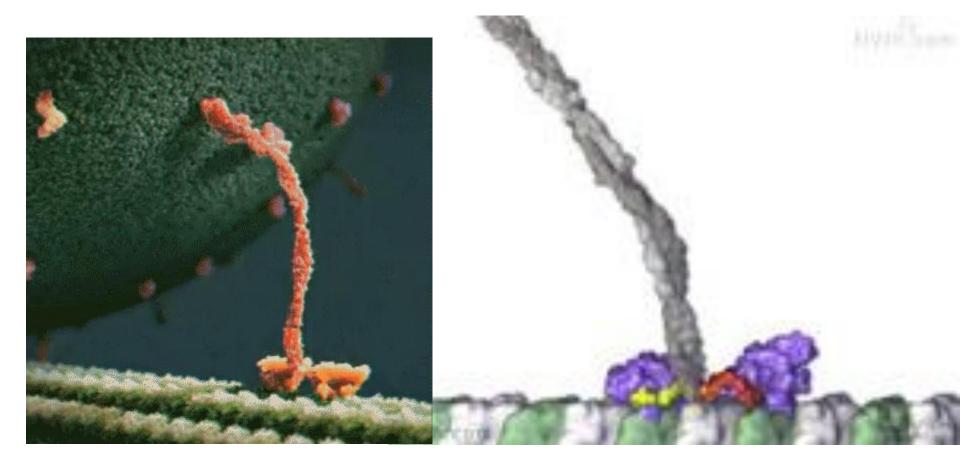
- □ Adenylate kinase
- Motor proteins


Protein dynamics – role in biology

Adenylate kinase

- Biological processes
 - catalyzes interconversion of ATP + AMP ⇔ 2 ADP
- □ Large conformational change
 - 90 degrees rotation of whole domain, up to 30 Å amplitude
 - induced by binding of ATP
 - shielding of bound substrate from solvent

Adenylate kinase



Protein dynamics – role in biology

Motor proteins

- Biological processes
 - myosin movement along actin filament
 - kinesin movement along microtubule
- Motor head
 - ATPase domain binding of ATP
 - Inker domain changes conformation upon ATP binding
- One step
 - moves a motor head for about 160 Å
 - moves an attached cargo for about 80 Å

Motor proteins

Protein dynamics – role in biology

References

- Gu, J. & Bourne, P. E. (2009). Structural Bioinformatics, 2nd Edition,
 Wiley-Blackwell, Hoboken.
- Petsko, G. A. & Ringe, D. (2004). Protein Stucture and Function, New Science Press, London.
- Schwede, T. & Peitsch, M. C. (2008). Computational Structural Biology: Methods and Applications, World Scientific Publishing Company, Singapore.
- Daggett, V. & Fersht, A. R. (2003). Is there a unifying mechanism for protein folding? *Trends in Biochemical Sciences* 28: 18-25.
- Dill, K. A. *et al.* (2008). The protein folding problem. *Annual Review of Biophysics* 37: 289-316.