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a Revisions

0 Protein folding
0 Protein stability

0 Protein dynamics
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o Covalent interactions

= sharing of electrons
= under standard condition — very stable

" primary structure of proteins

a Non-covalent (weak) interactions

= electrostatic interactions
= polarinteractions
" non-polarinteractions

= secondary, tertiary and quaternary structure of proteins
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0 Charge-charge interactions

= charged residues — Arg, Lys, Glu, Asp and His (low pH)
= |ong-range interaction — decrease with r?
= environment dependent
= permitivity (g):
= 1-vacuum
= 2-20 - interior of proteins, membranes
= 80 - bulk water -> water shields the chares form each
others
= salt concentration — counter ions close to charged residues

= pH- change in charge of molecule (His)

Molecular interactions - electrostatics 4



0 Hydrogen bonds (H-bonds)

donor and acceptor atoms sharing hydrogen

polar residues —Ser, Thr, Asn, Gln, Cys, Trp, Tyr and His (high pH)
charged residues — Arg, Lys, Glu, Asp and His (low pH)

governs formation of secondary structure

H-bond distance: 2.8-3.4 A acceptor donor
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a Aromatic (rt-mt) interactions

= attractive interaction between aromatic rings

= aromatic residues — Phe, Trp, Tyr and His

= distance of centre of mass — about 5 A
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a van der Waals (vdW) interactions

=  between any two atoms -> all residues

= short-range interactions
= negligible beyond 5 A .
. Chance charge
= tertiary structure separation
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0 Hydrophobic interactions

= hydrophobic residues — Phe, Pro, Met, Leu, lle, Val, Ala, and

possibly also Tyr and Trp

= entropic origin — water molecules ordered around hydrophobic

residues -> unfavorable

= hydrophobic packing -> release of some ordered water ->

favorable increase of entropy o

= tertiary structure
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0 Levinthal’s paradox
0 Anfinsen’s thermodynamic hypothesis
O Mechanisms of protein folding
0 Energetics of protein folding

0 Database of protein folding

0.0 ns
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0 Cyrus Levinthal

= 1968 — impossibility of random folding

= random folding

100 residue protein (average sized)

3 conformation per residue (many more)

0.1 ps sampling time per conformation (much longer)
folding time =3190*%1013 5= 5*103 s =

1 634 251 397 552 039 990 billions of years

0 Experimental folding rates

= 1 msto 10 min

Protein folding — Levinthal’s paradox



a Christian Anfinsen

= 1973 — protein folding in vitro

= refolding of ribonuclease

0 Findings
= npative structure of a protein is the thermodynamically stable
structure
= folding depends only on the amino acid sequence and on the

conditions of solution, and not on the kinetic folding route

Protein folding — Anfinsen’s thermodynamic hypothesis




Thermodynamic stability Kinetic stability

Native «— Denatured Native —» Denatured
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Unfolding Folding Reaction Coordinate

Protein folding — Thermodynamic and kinetic stability




e

Hydrophobic Nucleation Nucleation
(local) (2° & 3° structure)

Diffusion/collision Rearrangement Propagation Condensation

Protein folding — mechanisms




0 Nucleation-growth (propagation) model

= continuous growth of tertiary structure from initial nucleus of local
secondary structure

= jt did not account for folding intermediates -> model dismissed

Protein folding — mechanisms




o Framework model

= secondary structure folds first -> coalescence of secondary

structural units to the native protein
0 Hydrophobic collapse model
= compaction of the protein -> folding in a confined volume ->
narrowing the conformational search to the native state

0 Nucleation-condensation model

= concerted & cooperative secondary and tertiary structure formation
= transition state resembles distorted form of the native structure

= the least distorted part called folding nucleus or molten globule

Protein folding — mechanisms




0 Free energy of folding (AG, = AH - T.AS)
= protein more structured -> AS{, — unfavorable
= solvent less structured -> AS]* — favorable
= hydrophobic interactions are driving “force”

=" more non-covalent interactions -> AH{, — favorable

Free energy

Unfolding Folding

Protein folding — energetics



Flat landscape Tunnel landscape Realistic landscape
(Levinthal paradox) (discrete pathways) (“folding funnel”)

Protein folding — energetics 17




- entropy >

fast slow
' ; U
Fast Pathway
-
/’ -

[

~10 ms

U ) collapse

formation \N

Slow Pathway

&
G | \

>

C

-<+—— free energy —

hierarchical

assembly on-pathway

N intermediate ﬁ
U : ‘ cqllapse

reorganization

Protein folding — energetics




Protein folding — energetics




0 Basics of protein stability

0 Database of protein stability

Protein stability 20




0 Tertiary structure of protein

= sum of non-covalent weak interactions vs conformational entropy
= folded protein = thermodynamic compromise

= folded protein marginally more stable than unfolded (10-80 kJ/mol)

Thermodynamics of Protein Folding
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0 Tertiary structure of protein

= sum of non-covalent weak interactions vs conformational entropy
= folded protein = thermodynamic compromise
= folded protein marginally more stable than unfolded (10-80 kJ/mol)

Ao

Unfolded

Transition state

\ AG

Folded

= Weak interactions are frequently disrupted
= denaturation - disrupted bonds replaced by bonds with solvent

= dynamics - disrupted bonds reformed between protein atoms

Protein stability — basics 22




O ProTherm

=  https://www.iitm.ac.in/bioinfo/ProTherm/index.html

= set of 746 unique proteins and 311 proteins with mutants
= numerical data of thermodynamic parameters for wild type and

mutant proteins

o Data

= Gibbs free energy change, enthalpy change, heat capacity change,
transition temperature
= secondary structure and accessibility for wild type residues

= experimental conditions, methods and activity information

Protein stability — database 23



https://www.iitm.ac.in/bioinfo/ProTherm/index.html

“ro ' herm' HOME BROWSE  STATISTICS  TUTORAL  UPLOAD  RELATED RESOURCES ~ DOWNLOADS ~ CITEUS  CONTACT US

OVERVIEW

ProThermDB, thermodynamic Database for Proteins and Mutants (ProThermDB) contains
more than 32,000 data of several thermodynamic parameters such as melting temperature,
free energy obtained with thermal and denaturant denaturation, enthalpy change, and heat
capacity change along with experimental methods and conditions, sequence, structure, and
literature information. Besides, the current version of the database includes ~0.12 million
thermodynamic data obtained for different organisms and cell lines, which are determined
by recent high throughput proteomics techniques using whole-cell approaches. In addition,
we provided a graphical interface for the visualization of mutations at sequence and
structure levels. ProThermDB is cross-linked with other relevant databases, PDB, UniProt,

PubMed, etc.

ProThermDB can be queried through the search options by giving UniProt ID, PDB ID,
protein name, mutation, experimental conditions, and author name, etc. Users can check
our tutorial to get help in searching the database. Fill the download form provided to

download the entire dataset.

yrothermdb/index.html |

Protein stability — database

WHAT'S NEW

* ProThermDB is now available
#* 7000+ Mutation data are added to ProThermDB

* New features are included in the ProThermDB
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Protein information

Entry Protein UniProt Mutation (UniProt)
Source PDB Mutation (PDB) Sec Str
ASA [ EC Number

Experimental conditions
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Select All




Entrv Protein Source Mutation Tm  Measure Reversibility
2 Kibonuclease HI Escherichia coli WILD 49800 CD YES
6 Ribonuclease HI Escherichia coli  WILD 52.00 CD YES
7 Ribonuclease HI Escherichiacoli K91 R 4980 CD YES
g Ribonuclease HI Escherichiacoli K91 R 52.00 CD YES
g Ribonuclease HI Escherichiacoli D94 E 4980 CD YES
10  Ribonuclease HI Escherichiacoli D94 E 52.00 CD YES
11 Ribonuclease HI Escherichiacoli K95 G 4980 CD YES
12 Ribonuclease HI Escherichiacoli K95 G 52.00 CD YES
13 Ribonuclease HI Escherichiacoli K95 A 4980 CD YES
14  Ribonuclease HI Escherichiacoli K95 A 52.00 CD YES
15  Ribonuclease HI Escherichiacoli K95N 4980 CD YES
16  Ribonuclease HI Escherichiacoli K95 N 52.00 CD YES
124  Ribonuclease HI Escherichia coli  WILD 53.00 CD YES
125 Ribonuclease HI Eschenichiacoli A 521 59.20 CD YES
126 Ribonuclease HI Escherichia coli A 52V 5850 CD YES
127  Ribonuclease HI Escherichiacoli A 52 L 5730 CD YES
128 Ribonuclease HI Escherichiacoli A 52 C 5550 CD YES
129 Ribonuclease HI Escherichiacoli A 52 M 5460 CD YES
130 Ribonuclease HI Escherichiacoli A 52 F 51.50 CD YES
131 Ribonuclease HI Escherichiacoli A 52T 5030 CD YES
132 Ribonuclease HI Escherichiacoli A 52 Q 49.10 CD YES
133 Ribonuclease HI Escherichiacoli A 52 E 48.00 CD YES
134 Ribonuclease HI Escherichiacoli A 52 P 4760 CD YES
135 Ribonuclease HI Escherichiacoli A 52 § 4720 CD YES
136 Ribonuclease HI Escherichiacoli A 352N 4710 CD YES
137 Ribonuclease HI Escherichiacoli A 52D 46.90 CD YES
138 Ribonuclease HI Escherichiacoli A 52 Y 4540 CD YES
139 Ribonuclease HI Escherichiacoli A 32 G 4410 CD YES
140 Ribonuclease HI Escherichiacoli A 52 H 4120 CD YES
141 Ribonuclease HI Escherichiacoli A 52K 3350 CD YES

Protein stability — database



O FireProtDB

= https://loschmidt.chemi.muni.cz/fireprotdb/

= numerical data of thermodynamic parameters for wild type and
mutant proteins
= More than 16,000 experimental stability data on ~ 300 proteins

=  Manual curation

o Data

= Gibbs free energy change, enthalpy change, heat capacity change,
transition temperature

= experimental conditions and methods

Protein stability — database 27
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Database of protein stability

D
S FIREPROT

v1.1 Mutational data for protein stability

ADVANCED - Q

Home Help Show all Use cases Acknowledgement

FireProtDB is a comprehensive, manually curated database of the protein stability data for single-point mutants.

Proteins find their use in numerous biomedical and biotechnological applications. Naturally occurring proteins usually cannot withstand harsh industrial environments since they have evolved to function under mild conditions.
Increasing protein stability is one of the key determinants of protein applicability. The predictive power of the current computational tools is compromised by the limited experimental data that would allow a rigorous training
and testing.

This database combines the published datasets from ProTherm and ProtaBank, the data extracted from the recent literature, and the measurements collected in our laboratory. The annotations were obtained from
VariBench and HotSpot Wizard. The graphical user interface is designed to facilitate both types of the expected use: (i) the interactive explorations of individual entries on the level of a protein or a mutation and (ii) the
construction of highly customized, machine learning-friendly datasets using advanced searching and filtering

Sources of data Sources of annotations
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FireprotDB search results

Export CSV

 Stabilizing @ Destabilizing © Neutral

Halohydrin dehalogenase
Halohydrin dehalogenase
Halohydrin dehalogenase
Halohydrin dehalogenase
Halohydrin dehalogenase
Halohydrin dehalogenase
Halohydrin dehalogenase
Halohydrin dehalogenase
Halohydrin dehalogenase

Halohydrin dehalogenase
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0 Basics of protein dynamics

0 Characteristics of protein motions
0 Dynamics and protein function

0 Approaches to study dynamics

0 Databases of dynamics

0 Protein dynamics in biology
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O Origin of dynamics — disruption of weak interactions by

= thermal kinetic energy (k,.T)

" binding interactions (ligands or other proteins) —induced fit

0 Protein atoms fluctuates around their average positions
= jn tightly packed interior — movement restricted
= pear surface — movement promoted by solvent movements

= > proteins considered as “semi-liquids”

Protein dynamics — introduction




0 Divisions of protein motions

Type of motion Moving moiety Functionality
. : bond vibration; ligand flexibility; temporal
Local atoms; side-chains . g Y P
diffusion pathways
. active site conformational changes; motion of
Medium-scale secondary structures . . .
hinge; peptide bond rotation;
: hinge facilitated domain movements;

Large-scale domains . o\

allosteric transition

Global subunits helix-loop transition; folding/unfolding

Protein dynamics — characteristics of protein motions




0 Fluctuations

= Jessthan1A
= |ocal motions
a Collective motions
= 1-10A
= medium and large-scale motions
0 Triggered conformational changes

= morethan 10 A

= global motions

Protein dynamics — characteristics of protein motions
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0 Time scales governed by local environment

interior — motions coupled due to packing restraints

surface — no coupling of motions

0 Example: aromatic ring flipping

can occur on ps time scale, but often observed on ms time scale
aromatic residues -> hydrophobic -> inside protein -> tightly packed
-> low probability of synchronized movement of surrounding atoms

-> prolonged time scale

Protein dynamics — characteristics of protein motions




0 NMR spectroscopy

0 High resolution X-ray crystallography

0 Computational

= Normal mode analysis (NMA)

=  Molecular dynamics (MD)

Protein dynamics — approaches to study dynamics




0 Ensemble of possible low energy conformations
0 Directly shows possible amplitudes of motion
0 Limited applicability to larger proteins

0 Does not describe

= very fast motions & transition states

" time scales & energetics of motions

Protein dynamics — approaches to study dynamics




0 Average low energy structure - more conformations:

= in one structure only if both are separated by barrier

= in multiple structures

Protein dynamics — approaches to study dynamics



0 Average low energy structure - more conformations:

" inone structure only if both are separated by barrier

" in multiple structures

0 Crystalline state
" non-native contacts

= artificially lower amplitudes of motions
0 Range of fluctuations — B-factors
0 Does not describe

= very flexible regions

= collectiveness of motions

= time scales & energetics of motions

Protein dynamics — approaches to study dynamics




0 Principle
= motion of system as harmonic vibration around a local minimum
= Coarse-grained model, residues connected with springs

o Small number of low-frequency normal modes

= shows directionality, collectiveness and sequence of global motions

0 Does not describe
= |ocal movements
= amplitudes & time scales

= energetics of motions

Protein dynamics — approaches to study dynamics




total

0 Principle

= physical description of interactions within system (force field)
=  Newton’s laws of motions
= forces acting on all atoms due to all atoms

= small time-step ~ 2 fs

44,

ZK(r r) + 2 K(0- 9) > L1+ cos(ng — y)]+2[R —R"6

angles dzhedrals

Protein dynamics — approaches to study dynamics
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total

0 Principle

= physical description of interactions within system (force field)
=  Newton’s laws of motions
= forces acting on all atoms due to all atoms

= small time-step ~ 2 fs

Bonded Non-bonded

)\

4 N 7

qiq,-

= K1)+ TKO-0,) + > e (1 + cos(ng - y)]—I-Z[R —36

angles dzhedrals i<j

Protein dynamics — approaches to study dynamics

']




0 Principle
= physical description of interactions within system (force field)

= Newton’s laws of motions
0 Provides information on energetics, amplitudes and time
scales of local motions on atomic level

a0 Does not describe

= slower large scale motions (> ms)

Protein dynamics — approaches to study dynamics
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Molecular dynamics

o Classical MD

0 Enhanced sampling
= Adaptive sampling
= Metadynamics

=  Accelerated MD

= Umbrella sampling

E o=t ]




a Classical MD ’} ¢ i e g

0 Enhanced sampling

= Adaptive sampling All-atom <= Coarse-grained

= Metadynamics
= Accelerated MD
=  Umbrella sampling

0 Coarse-grained molecular dynamics

Introduction to structural biology




Analysis of interactions
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Ligand conversion Interaction with membrane
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0 Molecular Dynamics Extended Library (MoDEL)

0O Dynameomics
o Molecular Movements Database (MolMovDB)

O ProMode-Elastic

Protein dynamics — databases 48




a http://mmb.pcb.ub.es/MoDEL/

o >1,700 MD simulations of proteins representatives of all
monomeric soluble structures in PDB
0 10 ns trajectories from MD simulations

0 Data
= pre-computed analysis of geometry, secondary structure, flexibility
and inter-residue contacts
= trajectory video

= downloadable trajectories

Protein dynamics — databases 49
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BROWSE BY ID

1ASS. APICAL DOMAIN OF THE CHAPERONIN FROM THERMOPLASMA ACIDOPHILUM
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Experimental
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I3

Switch to 3D {IJmol}

@ Jmol animation
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Wl FlexServ

@ Download trajectories
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www.dynameomics.org

MD simulations of over 800 proteins
Longer trajectories (> 31 ns)

Data
= pre-computed analysis of RMSD, SASA, Phi-Psi, and contacts
= trajectory video
= visualization of individual snapshots

= downloadable trajectories on request
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http://www.dynameomics.org/

nameomics
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o http://www.molmovdb.org/

0 Collection of over 178 molecular motions
0 Based on morphing — interpolation of motion between two
experimental crystal structures

o Data
= classification scheme for molecular motions
"  movements animations
= hinge identification, structural analysis tools, references to
experimental crystal structures

= downloadable morphs as multi-model PDB
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http://www.molmovdb.org/

7 This outline presents the current database classified by any classification scheme for which data has been compiled. The ariginal schema which separates motions by type of movement is defined on the help page.
Thurnbnail images appear for mations which have available movies, and link to the best morph for that particular protein.

Many more movies can be seen here, including structures not represented on this page. The movies page also allows searches for pratein names or specitic PDB 1Ds

Switch to CATH survey

% Adenosylcobinamide Kinase [motion] [morph]

‘w Small G-protein Arfs [motion]  [morph]
Bacteriorhodopsin (bR) [motion] [morph]

e% Calbindin [motion] [morph]

-5

"w Dihydrofolate Reductase (DHFR) [motion] [meorph]

& Histidine-Containing Phosphocarrier Protein [motion] [morph]
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0 https://pdbj.org/promode-elastic

0 Normal mode analysis of PDB data — on PDB database

a Data

= fluctuation of atoms and dihedral angles
= correlation between fluctuating atoms

= distance map between residues

= animation of fluctuating molecules

= displacement vectors

Protein dynamics — databases
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0 Adenylate kinase

O Motor proteins

Protein dynamics — role in biology




0 Biological processes

= catalyzes interconversion of ATP + AMP & 2 ADP

0 Large conformational change

= 90 degrees rotation of whole domain, up to 30 A amplitude
= induced by binding of ATP

= shielding of bound substrate from solvent

Protein dynamics — role in biology
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0 Biological processes

= myosin movement along actin filament

= kinesin movement along microtubule
o Motor head

=  ATPase domain — binding of ATP

" linker domain — changes conformation upon ATP binding
O One step

= moves a motor head for about 160 A

* moves an attached cargo for about 80 A

Protein dynamics — role in biology




Motor proteins
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