

Macromolecular complexes and interactions

Outline

- Macromolecular complexes
- Structure of complexes
- Prediction of 3D structures of complexes
- Analysis of macromolecular complexes

Biological relevance

- Types of biologically relevant complexes
 - Protein small molecule 🗹
 - Protein protein
 - Protein nucleic acids

Macromolecular complexes

Nucleic acids – small molecule

Biological relevance

- Many proteins are formed by two or more polypeptide
 chains (protomers) interacting with each other
- Protein-protein and protein-nucleic acid interactions have central importance for virtually every process in a living cell (molecular recognition)
 - Regulation
 - Transport
 - Signal transduction
 - Genetic activity (transcription, translation, replication, repair, ...)
 - ...

Protein-protein complexes

Oligomerization

Native interactions between proteins in native conditions

Aggregation

- Interactions between native proteins at extreme conditions
- Interactions between misfolded/partially folded proteins → disease

Protein-protein complexes

Obligate complexes

- Protomers (individual polypeptides) do not function as independent
 - structures, only when associated
- Examples: GABA receptors, ATP synthase, many ion channels, ribosome, etc.

■ Non-obligate complexes

- Protomers can exist and be functional as independent structures
- Examples: hemoglobin, beta-2 adrenergic receptor, insulin receptor, etc.

Protein oligomerization

- Oligomerization is common
 - More than 35 % of proteins in a cell are oligomers
 - Tetramer is the average oligomeric state of proteins in E. coli
 - Homo-oligomers the most common
 - Some proteins exists solely in the oligomeric state
- Oligomers are often symmetric
- Oligomerization interfaces are complementary
- Oligomerization is favored by evolution

Advantages of oligomerization

□ Why do proteins form oligomers?

Advantages of oligomerization

- Morphological function
 - More complex structures are often required for multiple functions
- Cooperative function
 - Allostery
 - Multivalent binding
- Enhanced stability
 - Smaller surface area
 - More interactions
- □ ... (ex. Translation error control)

Oligomerization interface

Characteristics of oligomeric interface

- Large surface area (> 1400 Å²)
- Tendency to circular and planar shape (not for obligates)
- Some residues protrude from the surface
- More non-polar residues (about 2/3) than in other parts of surface
- More polar residues (about 1/5) than in protein cores
- About 1 H-bond per 200 Å²

□ Hot-spot residues

- Responsible for most of the oligomeric interactions
- More evolutionary conserved than other surface residues
- Frequently polar residues, located about the center of the interface

Protein-nucleic acids complexes

Protein-nucleic acid interactions

- Non-specific electrostatic interactions with negative charge on the backbone of nucleic acid -> Lys and Arg residues
- Specific recognition of particular nucleotide sequences
 - Major groove B-DNA
 - Minor groove A-DNA or A-RNA
 - Single strand RNA

Typical interfaces/motifs

- DNA binding proteins
- RNA binding proteins

Protein-nucleic acids complexes

DNA binding proteins

Helix-turn-helix

Zinc finger

Protein-nucleic acids complexes

RNA binding proteins

- Recognition is often also governed by particular structures of RNA
- Many motifs employed

RNA recognition motif

K-homology domain

Pumilio repeat domain

Structure of complexes

- Quaternary structure in PDB database
- Complex or crystallization artifact?

Quaternary structure in PDB database

Asymmetric unit (ASU)

- Macromolecular structures from X-ray crystallography deposited to
 PDB as a single asymmetric unit
- The smallest portion of a crystal structure to which symmetry operations can be applied in order to generate the unit cell

Unit cell (crystal unit)

The basic unit of a crystal that, when repeated in three dimensions,
 can generate the entire crystal

Quaternary structure in PDB database

Crystalline environment

Crystal contacts

- Intermolecular contacts solely due to protein crystallization
 - Causes artifacts of crystallization
 - Crystal packing complicates identification of native quaternary structure

Crystalline environment

Artifacts of crystallization

- Concerns about conformation of some surface regions
- Often loops or side chains are affected
- Can complicate the evaluation of the effects of mutations

Quaternary structure in PDB database

Biological unit

- The functional form of a protein in nature
- Also called: functional unit, biological assembly, quaternary structure
- Can depend on the environment, post-translational modifications of proteins and their mutations

Homotetramer hemoglobin

Biological versus asymmetric unit

□ Biological unit can consist of:

Multiple copies of the ASU

One copy of the ASU

A portion of the ASU

Biological versus asymmetric unit

□ Large assemblies

Viral capsid

Filamentous bacteriophage PF1

Complex or artifact?

Problem

- Most proteins in the PDB have three or more crystal contacts that sum up to 30% of the protein solvent accessible surface area
- How to recognize biologically relevant contacts from crystal one?

Complex or artifact?

- Experimental knowledge of oligomeric state helps with identifying of the structure of native complex
 - Search literature
 - Experimental methods
 - Gel filtration, static or dynamic light scattering, analytical ultracentrifugation, native electrophoresis, ...
- □ How to get the structure of a biological unit?
 - Author-specified assembly
 - Databases
 - Predictive tools

Author-specified assembly

REMARK 350 in headers of PDB file

- Contains symmetry operations to reconstruct biological unit, but...
- → Verify author-proposed biological unit by other means
 - Sometimes the specific oligomers were not known at the time the ASU was published
 - Some authors may have failed to specify the biological unit even when it was known
 - Rarely, the specified biological unit might be incorrect

Employed by

RCSB PDB and other tools

Author-specified assembly

□ RCSB PDB

Generates a PDB file in which all protein chains are as separate
 models → complicates visualization and analysis

Crystal lattice

PyMOL

- Generate > Symmetry mates → to visualize nearest partners
- You can select some and combine them in a PDB file

Prediction of 3D structure of complexes

□ How can we predict macromolecular complexes?

Prediction of 3D structure of complexes

- Homology-based methods
- Machine learning-based threading
- Macromolecular docking

- The model of a protein complex is built based on a similar protein complex with a known 3D structure
- Assumes that the interaction information can be extrapolated from one complex structure to close homologs of interacting proteins
 - Close homologs (≥ 40% sequence identity) almost always interact in the same way (if they interact with the same partner)
 - Sequence similarity is only rarely associated with a similarity in interactions
- Limited applicability (low number of templates)

- HOMCOS (Homology Modeling of Complex Structure)
 - https://homcos.pdbj.org/
 - Predicts 3D structure of homodimers and heterodimers by homology modeling
 - Optionally, identifies potentially interacting proteins
 - Steps:
 - BLAST search to identify homologous templates in the latest representative dataset of heterodimer (homodimer) structures
 - 2. Evaluation of the model validity by the combination of sequence similarity and knowledge-based contact potential energy
 - 3. Generation of a script for building full atomic model by MODELLER

Machine learning-based

AlphaFold-Multimer

Predicts 3D structure of multimers; similar to AlphaFold

MKRVDVLDSAMSYIDVGQGDPIVFLHGNPTSSYLWRNVI PHLSDVGRCLAPDLIGMGASGTSPTFSYRFADHVRYLDA WFEAVGITENVVLVVHDWGSALGFYRALRYPEQIAGIAY MDALVQPRTWAGFTDYEPLMRALRTEQGERMALAENVFV EKVVPGGVQRQLTEEEMAVYRTPYPTPQSRIPTLLWARE IPVEGEPADVQAMVQEYADFLSRSDIPKLLIVAEPGAIL HEGGSELDFARSWPNQREVKVAGRHFLQEDSPDAIGAAV RAFVLDVRER

>ChainB

MKRVDVLDSAMSYIDVGQGDPIVFLHGNPTSSYLWRNVI PHLSDVGRCLAPDLIGMGASGTSPTFSYRFADHVRYLDA WFEAVGITENVVLVVHDWGSALGFYRALRYPEQIAGIAY MDALVQPRTWAGFTDYEPLMRALRTEQGERMALAENVFV EKVVPGGVQRQLTEEEMAVYRTPYPTPQSRIPTLLWARE IPVEGEPADVQAMVQEYADFLSRSDIPKLLIVAEPGAIL HEGGSELDFARSWPNQREVKVAGRHFLQEDSPDAIGAAV RAFVLDVRER

Macromolecular docking

- Prediction of the best bound state for given 3D structures of two or more macromolecules
- Difficult task
 - Large search space many potential ways in which macromolecules can interact
 - Flexibility of the macromolecular surface and conformational changes upon binding
- Can be facilitated by prior knowledge
 - Ex: known binding site → significant restriction of the search space
 - Distance constraints on some residues

Macromolecular docking

- Macromolecule representation
- Search algorithm
- Scoring function

Macromolecule representation

- Representation of the macromolecular surface (applicable to both receptor and ligand)
 - Geometrical descriptors of shape (set of spheres, surface normals, vectors radiating from the center of the molecule,...)
 - Discretization of space: grid representation

Macromolecule representation

- Macromolecule flexibility
 - Fully rigid approximation
 - Soft docking employs tolerant "soft" potential scoring functions to simulate plasticity of otherwise rigid molecule
 - Explicit side-chain flexibility optimization of residues by rotating part of their structure or rotation of whole side-chains using predefined rotamer libraries
 - Docking to molecular ensemble of protein structure composed from multiple crystal structures, from NMR structure determination or from trajectory produced by MD simulation

Macromolecule representation

- Macromolecule flexibility
 - Rigid body docking basic model that considers the two macromolecules as two rigid solid bodies
 - Semiflexible docking one of the molecules is rigid, and one is flexible (typically the smaller one)
 - Flexible docking both molecules are considered flexible

Macromolecular docking - search

- Generally based on the idea of complementarity between the interacting molecules (geometric, electrostatic or hydrophobic contacts)
- The main problem is the dimension of the conformational space to be explored:
 - Rigid docking: 6D (hard)
 - Flexible docking: 6D + N_{fb} (impossible!)
- □ Information on the rough location of the binding surface
 (experimental or predicted) → reduction of the search space

Macromolecular docking - search

Exhaustive search

- Full search of the conformational space: try every possible relative orientation of the two molecules
- Computationally very expensive 6 degrees of freedom for rigid molecules (translations + rotations)
- Grid approaches

Macromolecular docking - search

Stochastic methods

- Monte Carlo
- Genetic algorithms
- Brownian dynamics
- ...

Macromolecular docking - scoring

- Scoring functions
 - Evaluation of a large number of putative solutions generated by the search algorithms

- Methods often use a two-stage ranking
 - Approximate and fast-to-compute function used to eliminate very unlikely solutions
 - 2. More accurate function used to select the best among the remaining solutions

Macromolecular docking - scoring

Scoring functions

- Empirical
- Knowledge-based
- Force field-based
- Clustering-based the presence of many similar solutions is taken as an indication of correctness (all solutions are clustered, and the size of each cluster is used as a scoring parameter)

Macromolecular docking - scoring

- □ Good scores a combination of several parameters:
 - Low free energy or pseudo-energy based on force field functions
 - Large buried surface area
 - Good geometric complementarity
 - Many H-bonds
 - Good charge complementarity
 - Polar/polar contacts favored
 - Polar/non-polar contacts are disfavored
 - Many similar solutions (large clusters)
 - **...**

Web server/software and link	Docking method	Filtering and refinement
BDOCK [I52] http://www.biotec.tudresden.de/~bhuang/	FFT correlation based on shape complementarity, degree of burial and conservation	Altering the docking solutions with a scoring function
ClusPro [II0] http://nrc.bu.edu/cluster/	FFT correlation using DOT [109]	Filtering with empirical potential and clustering, refinement by SmoothDock [III]
DOT [I09] http://www.sdsc.edu/CCMS/DOT/	FFT correlation based on electrostatics and shape complementarity	Refinement by energy minimization
FireDock [I53] http://bioinfo3d.cs.tau.ac.il/FireDock/	None (refinement server)	Refinement using an energy function
GRAMMX [108] http://vakser.bioinformatics.ku.edu/resources/gramm/grammx	FFT correlation based on shape complementarity, hydrophobicity and smoothed potentials	Clustering and knowledge-based scoring
HADDOCK [I54] http://www.nmr.chem.uu.nl/haddock/	Data-driven docking approach based on biochemical and/or biophysical interaction data	None
HEX [I55] http://www.csd.abdn.ac.uk/hex/	Spherical polar Fourier correlations	None
MolFit [I56] http://www.weizmann.ac.il/ Chemical.Research.Support//molfit/home.html	FFT correlation based on chemical and shape complementarity	Clustering of the predicted conformations
PatchDock [II4] http://bioinfo3d.cs.tau.ac.il/PatchDock/	Geometric hashing and pose-clustering	Ranking according to a geometric shape complementarity score
PyDock [I57] http://mmb.pcb.ub.es/PyDock/	FFT based on electrostatics and desolvation energy	Ranking using an energy function
RosettaDock [II5] http://rosettadock.graylab.jhu.edu/	Local docking by Monte Carlo search	Ranking using an energy function, clustering
ZDOCK [I07] http://zlab.bu.edu/zdock/index.shtml	FFT correlation based on shape complementarity, desolvation energy and electrostatics	Refinement by energy minimization
3D-Dock [I58] http://www.sbg.bio.ic.ac.uk/docking/	FFT correlation using FTDOCK [I59]	Clustering, refinement of side- chains using Multidock [I59]

- □ ClusPro 2.0
 - http://cluspro.bu.edu/
 - Performs a global soft rigid-body search using PIPER docking program; employs knowledge-based potential
 - The top 1,000 structures are retained and clustered to isolate highly populated low-energy binding modes
 - A special mode for prediction of molecular assemblies of homo-oligomers

PatchDock

- http://bioinfo3d.cs.tau.ac.il/PatchDock/index.html
- Performs a geometry-based search for docking transformations that yield good molecular shape complementarity (driven by local feature matching rather than brute force searching of the 6D space):
 - 1. The molecular surface is divided into concave, convex and flat patches
 - 2. Complementary patches are matched \rightarrow candidate transformations
 - Evaluation of each docking candidate by a scoring function considering both geometric fit and atomic desolvation energy
 - 4. Clustering of the candidate solutions to discard redundant solutions
- Results can be redirected to FireDock for refinement and re-scoring

PatchDock

□ FireDock

- http://bioinfo3d.cs.tau.ac.il/FireDock/index.html
- Refines and re-scores solutions produced by fast rigid-body docking algorithms
- Optimizes the binding of each candidate by allowing flexibility in the side-chains and adjustments of the relative orientation of the molecules
- Scoring of the refined candidates is based on softened van der Waals interactions, atomic contact energy, electrostatic, and additional binding free energy estimations

Analysis of macromolecular complexes

- Binding energy
- Macromolecular interface
- Interaction hot spots

Binding energy

□ FastContact

- http://structure.pitt.edu/servers/fastcontact/
- Rapidly estimates the electrostatic and desolvation components of the binding free energy between two proteins
- Additionally, evaluates the van der Waals interactions using
 CHARMM and reports contribution of individual residues and pairs
 of residues to the free energy → highlight the interaction hot spots

```
    SUMMARY ENERGIES ------

Electrostatic (4r) Energy: -18.3684946 kcal/mol
Desolvation Free Energy: 8.31365025 kcal/mol
van der Waals (CHARMm19): -1734.5 kcal/mol
Top 20 Min & Max ligand residues contributing to the binding free energy
-2.628
         89 ASN
 -2.586
          6 LYS
 -2.209
          9 TYR
 -2.135 125 LEU
 -2.114
          2 PHF
 -1.832
        45 ARG
 -1.684
        87 ASN
```

Macromolecular interface

- □ The region where two protein chains or protein and nucleic acid chain come into contact
- Can be identified by the analysis of the 3D structure of the macromolecular complex

Interface analysis

- Provides information about basic features of macromolecular complexes interactions (e.g., shape complementarity, chemical complementarity,...)
- Provides information about interface residues
- Acquired information is useful for a wide range of applications
 - Design of mutants for experimental verification of the interactions
 - Development of drugs targeting macromolecular interactions
 - Understanding the mechanism of the molecular recognition
 - Computational prediction of interfaces and complex 3D structures
 - ...

Interface analysis

- Most common approaches for the definition of interfaces:
 - Methods based on the distance between interacting residues
 - Methods based on the change in the solvent accessible surface area
 (ASA) upon complex formation
 - Computational geometry methods (using Voronoi diagrams)
- All three approaches provide very similar results

Interface analysis - databases

- PDBsum (Pictorial database of 3D structures in the Protein Data Bank)
 - http://www.ebi.ac.uk/pdbsum/
 - Provides numerous structural analyses for all PDB structures and AlphaFold DB (human proteins), including information about protein-protein and protein-nucleic acid interfaces
 - Protein-protein interactions schematic diagrams of all proteinprotein interfaces and corresponding residue-residue interactions
 - Protein-nucleic acid interactions schematic diagrams of proteinnucleic acid interactions generated by NUCPLOT

Interface analysis - databases

Interface statistics

Chains	No. of interface residues	Interface area (A ²)	No. of salt bridges	No. of disulphide bonds	No. of hydrogen bonds	No. of non-bonded contacts
⊕ H ⊕	22:29	1344:1285	-	-	10	159
(a) H (i)	6:10	389:409	-		1	34
B H ®	6:7	340:363	-	_	1	28
BH®	23:25	1369:1313	-		10	159
● H	3:3	189:182	-	_	2	18

Interface analysis - databases

PDBsum

Protein-protein interface: @X@ Chain A Chain C Disulphide Non-bonded Hydrogen bonds bonds contacts Glu162 Arg44 Glu324 Lys21 (Asp282 Val279 Val63 (**Ile287** Phe17 Рго285 Leu55 (Gln284 Glu96 Pro283 Gln56 Asp320 Thr319 Ala57 (**Gly315** Ala314 Glu59 (His286

- Analyze interface of a given macromolecular complex
 - □ PISA (Protein Interfaces, Surfaces and Assemblies)
 - MolSurfer
 - Contact Map WebViewer
 - □ PIC (Protein Interaction Calculator)
 - **...**

- PISA (Protein Interfaces, Surfaces and Assemblies)
 - www.pdbe.org/pisa
 - An interactive tool for the exploration of macromolecular interfaces (protein, DNA/RNA and ligands), prediction of probable quaternary structures, database searches of structurally similar interfaces and assemblies
 - Overview and detailed characteristics of all interfaces found within a given structure (including those generated by symmetry operations)
 - Provides interface area, Δ^i G, potential hydrogen bonds and salt bridges, interface residues and atoms, ...

MolSurfer

- http://projects.villa-bosch.de/dbase/molsurfer/index.html
- Visualization of 2D projections of protein-protein and protein-nucleic acid interfaces as maps showing a distribution of interface properties (atomic and residue hydrophobicity, electrostatic potential, surface-surface distances, atomic distances,...)
- 2D maps are linked with the 3D view of a macromolecular complex
- Facilitates the study of intermolecular interaction properties and steric complementarity between macromolecules

■ MolSurfer

- Contact Map WebViewer
 - http://cmweb.enzim.hu/
 - Represents residue-residue contacts within a protein or between proteins in a complex in the form of a contact map

- PIC (Protein Interaction Calculator)
 - http://pic.mbu.iisc.ernet.in/
 - Identifies various interactions within a protein or between proteins in a complex

Interaction hotspots

- □ Hot spots: the residues contributing the most to the binding free energy of the complex
- Knowledge of hot spots has important implications to:
 - Understand the principles of protein interactions (an important step to understand recognition and binding processes)
 - Design of mutants for experimental verification of the interactions
 - Development of drugs targeting macromolecular interactions
 - ...

Interaction hotspots

- Hot spots are usually conserved and appear to be clustered in tightly packed regions in the center of the interface
- □ Experimental identification by alanine scanning mutagenesis
 → if a residue has a significant drop in binding affinity when mutated to alanine it is labeled as a hot spot
- Experimental identification of hot spots is costly and cumbersome → the computational predictions of hot spots can help!

- Most of the available methods are based on the 3D structure of the complex
- Knowledge-based methods
 - Combination of several physicochemical features
 - Evolutionary conservation, ASA, residue propensity, structural location, hydrophobicity,...)
- Energy-based methods
 - Calculation of the change in the binding free energy ($\Delta\Delta G_{bind}$) of the complex upon *in silico* modification of a given residue to alanine

Robetta

- http://old.robetta.org/alascansubmit.jsp
- Energy-based method
- Performs in silico alanine scanning mutagenesis of protein-protein or protein-DNA interface residues
- 1. The side chain of each interface residue is mutated to methyl
- 2. All side chains within 5 Å radius sphere of the mutated residue are repacked; the rest of the protein remains unchanged
- 3. For each mutant, $\Delta\Delta G_{bind}$ is calculated (residues with predicted $\Delta\Delta G_{bind} \ge +1$ kcal/mol = hot spot)

Robetta

Tue No	v 6 00:2	0:55 PST 2	012				
virtua	l alanine	scanning,	Minimize	d PfTPF	R1 23 1.alascan		
pdb#	chain	int id	res#	_ aa	DDG(complex)	DDG(complex,obs)	DG(partner)
15	A	_ 1	15	12	0.26	0.00	-0.11
18	A	1	18	5	1.99	0.00	1.27
45	A	0	45	16	-0.01	0.00	3.31
46	A	1	46	12	1.53	0.00	-0.07
53	A	1	53	16	-0.11	0.00	-0.57
80	A	1	80	15	2.52	0.00	4.85
83	A	1	83	2	-0.10	0.00	5.34
86	A	1	86	7	0.29	0.00	0.34
124	В	0	124	17	-0.02	0.00	0.60
125	В	1	125	8	1.75	0.00	0.08
126	В	1	126	4	-0.23	0.00	-0.41
127	В	1	127	4	0.02	0.00	-0.60
128	В	1	128	18	1.98	0.00	-0.45
129	В	1	129	3	-0.29	0.00	-0.81

- KFC2 (Knowledge-based FADE and Contacts)
 - https://mitchell-web.ornl.gov/KFC Server/
 - Knowledge-based method utilizing machine learning
 - Predicts hot spots in protein-protein interfaces by recognizing
 features of important binding contacts solvent accessibility, residue
 position within the interface, packing density, residue size, flexibility
 and hydrophobicity of residues around the target residue
 - Optionally, user can provide data to improve the prediction (ConSurf conservation scores, Rosetta alanine scanning results or experimental data)

□ KFC2 (Knowledge-based FADE and Contacts)

Exper Exper Class Value Hotspot Str Hotspot Str

KFC2 Hot Spot Prediction Server @mitchell-lab.org from Thu, 17 Mar 2011 12:18:45 CDT JobId: 3748 JobName: Demo 22 1dva kfc2

Chain	Res	Num	KFC2-A Class	KFC2-A Conf	KFC2-B Class	KFC2-B Conf	ConSurf Class		Rosetta Class	Roset DDG
Н	LEU	32		-0.75	Hotspot	0.10		2		0.41
Н	LEU	34		-0.71	Hotspot	0.11		2		1.25
н	ASN	37		-1.79		-0.97		1		0.01
Н	GLY	38		-0.15		-0.61		3		
Н	ALA	39		-1.59		-0.87		1		
Н	GLN	40		-1.53		-0.98		6		0.01
Н	ASP	60						1		
Н	ILE	65		-0.77		-0.40		3		0.73
Н	VAL	67		-0.30		-0.12		5		0.70
Н	GLU	70		-1.28		-0.73	Conserv	7		1.02
Н	LEU	73	Hotspot	0.14	Hotspot	0.24		2		0.53
Н	SER	74		-1.20		-0.89		5		0.11
Н	GLU	75		-1.83		-0.98		1		0.00
Н	HIS	76		-0.95		-0.81		1		0.43
Н	GLU	80		-1.26		-0.65	Conserv	7		0.01
Н	GLN	81		-2.03		-0.98		2		
Н	SER	82		-1.23		-0.86		1		-0.01
	CED	400						_		

References I

- Liljas, A. et al. (2009). Textbook Of Structural Biology, World Scientific Publishing
 Company, Singapore.
- □ Goodsell, D. S. & Olson, A. J. (2000) Structural symmetry and protein function. *Annual Review of Biophysics and Biomolecular Structure* **29**: 105-153.
- Demachenko, A. P. (2001). Recognition between flexible protein molecules: induced and assisted folding. *Journal of Molecular Recognition* 14: 42-61.
- Ali, M. H. & Imperiali, B. (2005) Protein oligomerization: How and why. *Bioorganic & Medicinal Chemistry* **13**: 5013-5020.
- □ Jahn, T. R. & Radford, S. E. (2008) Folding *versus* aggregation: Polypeptide conformations on competing pathways. *Archives of Biochemistry and Biophysics* **469**: 100-117.
- Csermely, P. *et al.* (2010) Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. *Trends in Biochemical Sciences* **35**: 539-546.

References 70

References II

- Bujnicki, J. (2009). Prediction of Protein Structures, Functions, and Interactions, John
 Wiley & Sons, Ltd., Chichester, p. 302.
- Tramontano, A. (2005). **The Ten Most Wanted Solutions in Protein Bioinformatics**, CRC Press UK, London, p. 186.
- Tuncbag, N., et al. (2009). A survey of available tools and web servers for analysis of protein-protein interactions and interfaces. *Briefings in bioinformatics* **10**: 217-232.
- Ezkurdia, I., et al. (2009). Progress and challenges in predicting protein-protein interaction sites. *Briefings in bioinformatics* **10**: 233-246.
- □ Fernández-Recio, J. (2011). Prediction of protein binding sites and hot spots.

 Computational molecular science 6: 680-698.
- Szilagyi, A., et al. (2005). Prediction of physical protein—protein interactions. *Physical biology* **2**: S1-S16.
- □ Moreira, I. S., et al. (2010). Protein-protein docking dealing with the unknown. Journal of computational chemistry **31**:317-342

References 71