

Macromolecular complexes and interactions

Outline

- Macromolecular complexes
- □ Structure of complexes
- □ Prediction of 3D structures of complexes
- Analysis of macromolecular complexes

Biological relevance

Types of biologically relevant complexes

Macromolecular

complexes

- Protein small molecule \blacksquare
- \blacksquare Protein protein
- **Protein nucleic acids**
- Nucleic acids small molecule $\mathbf{\Sigma}$
- □ Many proteins are formed by two or more polypeptide chains (protomers) interacting with each other
- Protein-protein and protein-nucleic acid interactions have central importance for virtually every process in a living cell (molecular recognition)
	- Regulation
	- **Transport**
	- **Signal transduction**
	- Genetic activity (transcription, translation, replication, repair, ...)

...

Macromolecular complexes – protein-protein complexes 5 and 3 set 5 s

Protein-protein complexes

Oligomerization

Native interactions between proteins in native conditions

Aggregation

- **IF Interactions between native proteins at extreme conditions**
- **IF Interactions between misfolded/partially folded proteins** \rightarrow **disease**

Protein-protein complexes

Obligate complexes

- **Protomers (individual polypeptides) do not function as independent** structures, only when associated
- Examples: GABA receptors, ATP synthase, many ion channels, ribosome, etc.

Non-obligate complexes

- **Protomers can exist and be functional as independent structures**
- Examples: hemoglobin, beta-2 adrenergic receptor, insulin receptor, etc.

Protein oligomerization

- **Oligomerization is common**
	- More than 35 % of proteins in a cell are oligomers
	- **Tetramer is the average oligomeric state of** proteins in *E. coli*
	- Homo-oligomers the most common
	- **Some proteins exists solely in the oligomeric state**
- Oligomers are often symmetric
- Oligomerization interfaces are complementary
- Oligomerization is favored by evolution

heteropentamer a2bcd

Advantages of oligomerization

Macromolecular complexes – protein-protein complexes 8 and 8

Advantages of oligomerization

Morphological function

More complex structures are often required for multiple functions

Cooperative function

- **Allostery**
- **Nultivalent binding**
- **Enhanced stability**
	- **Smaller surface area**
	- **Nore interactions**

… (ex. Translation error control)

Oligomerization interface

Characteristics of oligomeric interface

- **Large surface area (> 1400 Å²)**
- **Tendency to circular and planar shape (not for obligates)**
- **Some residues protrude from the surface**
- More non-polar residues (about 2/3) than in other parts of surface
- **More polar residues (about 1/5) than in protein cores**
- About 1 H-bond per 200 \AA ²
- **Hot-spot residues**
	- **EXE** Responsible for most of the oligomeric interactions
	- **Nore evolutionary conserved than other surface residues**
	- **Figure 1** Frequently polar residues, located about the center of the interface

Protein-nucleic acids complexes

- **Protein-nucleic acid interactions**
	- Non-specific electrostatic interactions with negative charge on the backbone of nucleic acid -> Lys and Arg residues
	- **Specific** recognition of particular nucleotide sequences
		- Major groove B-DNA
		- \blacksquare Minor groove A-DNA or A-RNA
		- **Single strand RNA**
- **Typical interfaces/motifs**
	- **DNA binding proteins**
	- **RNA binding proteins**

Protein-nucleic acids complexes

- **DNA binding proteins**
	- H Helix-turn-helix

EXECUTE: \blacksquare Zinc finger

Protein-nucleic acids complexes

- **RNA binding proteins**
	- **Recognition is often also governed by particular structures of RNA**
	- **Nany motifs employed**

Structure of complexes

- Quaternary structure in PDB database
- □ Complex or crystallization artifact?

Asymmetric unit (ASU)

- **Macromolecular structures from X-ray crystallography deposited to** PDB as a single asymmetric unit
- **The smallest portion of a crystal structure to which symmetry** operations can be applied in order to generate the unit cell

Unit cell (crystal unit)

■ The basic unit of a crystal that, when repeated in three dimensions, can generate the entire crystal

Quaternary structure in PDB database

Crystalline environment

Crystal contacts

- **Intermolecular contacts solely due to protein crystallization**
	- Causes artifacts of crystallization
	- **EXP** Crystal packing complicates identification of native quaternary structure

Crystalline environment

Artifacts of crystallization

- **EX Concerns about conformation of some surface regions**
- **Often loops or side chains are affected**
- **EX Can complicate the evaluation of the effects of mutations**

Quaternary structure in PDB database

Biological unit

- The functional form of a protein in nature
- Also called: functional unit, biological assembly, quaternary structure
- Can depend on the environment, post-translational modifications

of proteins and their mutations

Homotetramer hemoglobin

Structure of complexes – quaternary structure in PDB database 19

Biological *versus* asymmetric unit

Biological unit can consist of:

Multiple copies of the ASU

One copy of the ASU

A portion of the ASU

Biological *versus* asymmetric unit

Large assemblies

Viral capsid

Filamentous bacteriophage PF1

Complex or artifact?

Problem

- **Most proteins in the PDB have three or more crystal contacts that** sum up to 30% of the protein solvent accessible surface area
- How to recognize biologically relevant contacts from crystal one?

Structure of complexes – complex or artifact? 22 Structure of complexes – complex or artifact?

Complex or artifact?

Experimental knowledge of oligomeric state helps with

identifying of the structure of native complex

- **Search literature**
- **Experimental methods**
	- Gel filtration, static or dynamic light scattering, analytical ultracentrifugation, native electrophoresis, …

How to get the structure of a biological unit?

- **E** Author-specified assembly
- **Databases**
- **Predictive tools**

Author-specified assembly

REMARK 350 in headers of PDB file

- Contains symmetry operations to reconstruct biological unit, but...
- \rightarrow Verify author-proposed biological unit by other means
	- Sometimes the specific oligomers were not known at the time the ASU was published
	- Some authors may have failed to specify the biological unit even when it was known
	- Rarely, the specified biological unit might be incorrect

Employed by

■ RCSB PDB and other tools

Author-specified assembly

RCSB PDB

Generates a PDB file in which all protein chains are as separate

 $models \rightarrow$ complicates visualization and analysis

Structure of complexes – complex or artifact? 25

Crystal lattice

PyMOL

- Generate > Symmetry mates \rightarrow to visualize nearest partners
- You can select some and combine them in a PDB file

Structure of complexes – complex or artifact? 26

Prediction of 3D structure of complexes

How can we predict macromolecular complexes?

Prediction of 3D structure of complexes 27 and 27 and 27

Prediction of 3D structure of complexes

- Homology-based methods
- Machine learning-based threading
- Macromolecular docking

- The model of a protein complex is built based on a similar protein complex with a known 3D structure
- Assumes that the interaction information can be extrapolated from one complex structure to close homologs of interacting proteins
	- Close homologs (≥ 40% sequence identity) almost always interact in the same way (if they interact with the same partner)
	- **EXECUTE:** Sequence similarity is only rarely associated with a similarity in interactions
- □ Limited applicability (low number of templates)

HOMCOS (**Ho**mology **M**odeling of **Co**mplex **S**tructure)

- <https://homcos.pdbj.org/>
- **Predicts 3D structure of homodimers and heterodimers by homology** modeling
- **•** Optionally, identifies potentially interacting proteins
- **Steps:**
	- 1. BLAST search to identify homologous templates in the latest representative dataset of heterodimer (homodimer) structures
	- 2. Evaluation of the model validity by the combination of sequence similarity and knowledge-based contact potential energy
	- 3. Generation of a script for building full atomic model by MODELLER

Prediction of 3D structure of complexes – homology based methods 31

Prediction of 3D structure of complexes – homology based methods 32

Machine learning-based

AlphaFold-Multimer

Predicts 3D structure of multimers; similar to AlphaFold

$>$ Chain A

MKRVDVLDSAMSYIDVGOGDPIVFLHGNPTSSYLWRNVI PHLSDVGRCLAPDLIGMGASGTSPTFSYRFADHVRYLDA WFEAVGITENVVLVVHDWGSALGFYRALRYPEQIAGIAY MDALVOPRTWAGFTDYEPLMRALRTEOGERMALAENVFV EKVVPGGVQRQLTEEEMAVYRTPYPTPQSRIPTLLWARE IPVEGEPADVOAMVOEYADFLSRSDIPKLLIVAEPGAIL HEGGSELDFARSWPNQREVKVAGRHFLQEDSPDAIGAAV **RAFVLDVRER**

 $>$ ChainB

MKRVDVLDSAMSYIDVGQGDPIVFLHGNPTSSYLWRNVI PHLSDVGRCLAPDLIGMGASGTSPTFSYRFADHVRYLDA WFEAVGITENVVLVVHDWGSALGFYRALRYPEQIAGIAY MDALVOPRTWAGFTDYEPLMRALRTEOGERMALAENVFV EKVVPGGVOROLTEEEMAVYRTPYPTPOSRIPTLLWARE IPVEGEPADVQAMVQEYADFLSRSDIPKLLIVAEPGAIL HEGGSELDFARSWPNQREVKVAGRHFLQEDSPDAIGAAV **RAFVLDVRER**

Prediction of 3D structure of complexes – homology based methods 33

Macromolecular docking

- □ Prediction of the best bound state for given 3D structures of two or more macromolecules
- Difficult task
	- Large search space many potential ways in which macromolecules can interact
	- **Filexibility of the macromolecular surface and conformational** changes upon binding
- □ Can be facilitated by prior knowledge
	- Ex: known binding site \rightarrow significant restriction of the search space
	- **Distance constraints on some residues**

Macromolecular docking

- Macromolecule representation
- □ Search algorithm
- □ Scoring function

Macromolecule representation

□ Representation of the macromolecular surface (applicable

to both receptor and ligand)

- Geometrical descriptors of shape (set of spheres, surface normals, vectors radiating from the center of the molecule,...)
- **Discretization of space: grid representation**

Macromolecule representation

- Macromolecule flexibility
	- **Fully rigid approximation**
	- Soft docking employs tolerant "soft" potential scoring functions to simulate plasticity of otherwise rigid molecule
	- **Explicit side-chain flexibility optimization of residues by rotating** part of their structure or rotation of whole side-chains using predefined rotamer libraries
	- Docking to molecular ensemble of protein structure composed from multiple crystal structures, from NMR structure determination or from trajectory produced by MD simulation

Macromolecule representation

- Macromolecule flexibility
	- **Rigid body docking basic model that considers the two** macromolecules as two rigid solid bodies
	- Semiflexible docking one of the molecules is rigid, and one is flexible (typically the smaller one)
	- **Flexible docking both molecules are considered flexible**

Macromolecular docking - search

- Generally based on the idea of complementarity between the interacting molecules (geometric, electrostatic or hydrophobic contacts)
- The main problem is the dimension of the conformational space to be explored:
	- Rigid docking: 6D (hard)
	- Flexible docking: $6D + N_{\text{fb}}$ (impossible!)
- Information on the rough location of the binding surface

(experimental or predicted) \rightarrow reduction of the search space

Macromolecular docking - search

- Exhaustive search
	- Full search of the conformational space: try every possible relative orientation of the two molecules
	- Computationally very expensive 6 degrees of freedom for rigid molecules (translations + rotations)
	- Grid approaches

Macromolecular docking - search

- Stochastic methods
	- **Monte Carlo**
	- **Genetic algorithms**
	- **Brownian dynamics**
	- ...

Macromolecular docking - scoring

- □ Scoring functions
	- **Evaluation of a large number of putative solutions generated by the** search algorithms

- □ Methods often use a two-stage ranking
	- 1. Approximate and fast-to-compute function used to eliminate very unlikely solutions
	- 2. More accurate function used to select the best among the remaining solutions

Macromolecular docking - scoring

- □ Scoring functions
	- **Empirical**
	- **Knowledge-based**
	- **Force field-based**
	- Clustering-based the presence of many similar solutions is taken as an indication of correctness (all solutions are clustered, and the size of each cluster is used as a scoring parameter)

Macromolecular docking - scoring

- □ Good scores a combination of several parameters:
	- Low free energy or pseudo-energy based on force field functions
	- **E** Large buried surface area
	- **Good geometric complementarity**
	- **Many H-bonds**
	- **Good charge complementarity**
	- Polar/polar contacts favored
	- Polar/non-polar contacts are disfavored
	- **Many similar solutions (large clusters)**
	- ...

ClusPro 2.0

- <http://cluspro.bu.edu/>
- **Performs a global soft rigid-body search using PIPER docking** program; employs knowledge-based potential
- **The top 1,000 structures are retained and clustered to isolate highly** populated low-energy binding modes
- A special mode for prediction of molecular assemblies of homo-oligomers

PatchDock

- <http://bioinfo3d.cs.tau.ac.il/PatchDock/index.html>
- Performs a geometry-based search for docking transformations that yield good molecular shape complementarity (driven by local feature matching rather than brute force searching of the 6D space):
	- 1. The molecular surface is divided into concave, convex and flat patches
	- 2. Complementary patches are matched \rightarrow candidate transformations
	- 3. Evaluation of each docking candidate by a scoring function considering both geometric fit and atomic desolvation energy
	- 4. Clustering of the candidate solutions to discard redundant solutions
- Results can be redirected to FireDock for refinement and re-scoring

PatchDock

- FireDock
	- <http://bioinfo3d.cs.tau.ac.il/FireDock/index.html>
	- **Refines and re-scores solutions produced by fast rigid-body docking** algorithms
	- Optimizes the binding of each candidate by allowing flexibility in the side-chains and adjustments of the relative orientation of the molecules
	- Scoring of the refined candidates is based on softened van der Waals interactions, atomic contact energy, electrostatic, and additional binding free energy estimations

Analysis of macromolecular complexes

- Binding energy
- Macromolecular interface
- Interaction hot spots

Binding energy

- FastContact
	- <http://structure.pitt.edu/servers/fastcontact/>
	- **Rapidly estimates the electrostatic and desolvation components of** the binding free energy between two proteins
	- Additionally, evaluates the van der Waals interactions using

CHARMM and reports contribution of individual residues and pairs

of residues to the free energy \rightarrow highlight the interaction hot spots

-- SUMMARY ENERGIES -----------Electrostatic (4r) Energy: -18.3684946 kcal/mol Desolvation Free Energy: 8.31365025 kcal/mol van der Waals (CHARMm19) : -1734.5 kcal/mol Top 20 Min & Max ligand residues contributing to the binding free energy -2.628 89 ASN -2.586 6 LYS -2.209 9 TYR -2.135 125 LEU -2.114 2 PHF -1.832 45 ARG -1.684 87 ASN

Analysis of macromolecular complexes – binding energy 51

- The region where two protein chains or protein and nucleic acid chain come into contact
- □ Can be identified by the analysis of the 3D structure of the macromolecular complex

- Provides information about basic features of macromolecular complexes interactions (e.g., shape complementarity, chemical complementarity,...)
- Provides information about interface residues
- Acquired information is useful for a wide range of applications
	- Design of mutants for experimental verification of the interactions
	- **Development of drugs targeting macromolecular interactions**
	- **Understanding the mechanism of the molecular recognition**
	- Computational prediction of interfaces and complex 3D structures

...

Interface analysis

- Most common approaches for the definition of interfaces:
	- **EXECT** Methods based on the distance between interacting residues
	- **Methods based on the change in the solvent accessible surface area** (ASA) upon complex formation
	- Computational geometry methods (using Voronoi diagrams)
- All three approaches provide very similar results

Interface analysis - databases

- PDBsum (Pictorial database of 3D structures in the Protein Data Bank)
	- **<http://www.ebi.ac.uk/pdbsum/>**
	- **Provides numerous structural analyses for all PDB structures and** AlphaFold DB (human proteins), including information about protein-protein and protein-nucleic acid interfaces
	- **Protein-protein interactions schematic diagrams of all protein**protein interfaces and corresponding residue-residue interactions
	- **Protein-nucleic acid interactions schematic diagrams of protein**nucleic acid interactions generated by NUCPLOT

Interface analysis - databases

D
PDBsum

Interface statistics

Interface analysis - databases

Analysis of macromolecular complexes – interface analysis 57

- Analyze interface of a given macromolecular complex
	- PISA (Protein Interfaces, Surfaces and Assemblies)
	- MolSurfer
	- Contact Map WebViewer
	- □ PIC (Protein Interaction Calculator)
	- …

- PISA (**P**rotein **I**nterfaces, **S**urfaces and **A**ssemblies)
	- www.pdbe.org/pisa
	- An interactive tool for the exploration of macromolecular interfaces (protein, DNA/RNA and ligands), prediction of probable quaternary structures, database searches of structurally similar interfaces and assemblies
	- Overview and detailed characteristics of all interfaces found within a given structure (including those generated by symmetry operations)
	- **Provides interface area,** Δ^{i} **G, potential hydrogen bonds and salt** bridges, interface residues and atoms, ...

MolSurfer

- <http://projects.villa-bosch.de/dbase/molsurfer/index.html>
- **Visualization of 2D projections of protein-protein and protein**nucleic acid interfaces as maps showing a distribution of interface properties (atomic and residue hydrophobicity, electrostatic potential, surface-surface distances, atomic distances,...)
- **2D maps are linked with the 3D view of a macromolecular complex**
- **Facilitates the study of intermolecular interaction properties and** steric complementarity between macromolecules

D MolSurfer

- □ Contact Map WebViewer
	- <http://cmweb.enzim.hu/>
	- **EXE** Represents residue-residue contacts within a protein or between proteins in a complex in the form of a contact map

- PIC (**P**rotein **I**nteraction **C**alculator)
	- **<http://pic.mbu.iisc.ernet.in/>**
	- \blacksquare Identifies various interactions within a protein or between proteins in a complex
- □ Hot spots: the residues contributing the most to the binding free energy of the complex
- Knowledge of hot spots has important implications to:
	- **Understand the principles of protein interactions (an important step** to understand recognition and binding processes)
	- Design of mutants for experimental verification of the interactions
	- Development of drugs targeting macromolecular interactions
	- ...

Interaction hotspots

- Hot spots are usually conserved and appear to be clustered in tightly packed regions in the center of the interface
- Experimental identification by alanine scanning mutagenesis \rightarrow if a residue has a significant drop in binding affinity when mutated to alanine it is labeled as a hot spot
- Experimental identification of hot spots is costly and cumbersome \rightarrow the computational predictions of hot spots can help!

- Most of the available methods are based on the 3D structure of the complex
- Knowledge-based methods
	- Combination of several physicochemical features
	- Evolutionary conservation, ASA, residue propensity, structural location, hydrophobicity,...)
- Energy-based methods
	- Calculation of the change in the binding free energy (ΔΔG_{bind}) of the complex upon *in silico* modification of a given residue to alanine

Robetta

- **<http://old.robetta.org/alascansubmit.jsp>**
- Energy-based method
- Performs *in silico* alanine scanning mutagenesis of protein-protein or protein-DNA interface residues
- 1. The side chain of each interface residue is mutated to methyl
- 2. All side chains within 5 Å radius sphere of the mutated residue are repacked; the rest of the protein remains unchanged
- 3. For each mutant, $ΔΔG_{bind}$ is calculated (residues with predicted $\Delta\Delta G_{bind} \ge +1$ kcal/mol = hot spot)

Robetta

- KFC2 (**K**nowledge-based **F**ADE and **C**ontacts)
	- **https://mitchell-web.ornl.gov/KFC_Server/**
	- **Knowledge-based method utilizing machine learning**
	- **Predicts hot spots in protein-protein interfaces by recognizing** features of important binding contacts – solvent accessibility, residue position within the interface, packing density, residue size, flexibility and hydrophobicity of residues around the target residue
	- Optionally, user can provide data to improve the prediction (ConSurf conservation scores, Rosetta alanine scanning results or experimental data)

KFC2 (**K**nowledge-based **F**ADE and **C**ontacts)

KFC2 Hot Spot Prediction Server @mitchell-lab.org from Thu, 17 Mar 2011 12:18:45 CDT JobId: 3748 JobName: Demo 22 1dva kfc2

References I

- Liljas, A. *et al*. (2009). **Textbook Of Structural Biology**, World Scientific Publishing Company, Singapore.
- Goodsell, D. S. & Olson, A. J. (2000) Structural symmetry and protein function. *Annual Review of Biophysics and Biomolecular Structure* **29**: 105-153.
- Demachenko, A. P. (2001). Recognition between flexible protein molecules: induced and assisted folding. *Journal of Molecular Recognition* **14**: 42-61.
- Ali, M. H. & Imperiali, B. (2005) Protein oligomerization: How and why. *Bioorganic & Medicinal Chemistry* **13**: 5013-5020.
- Jahn, T. R. & Radford, S. E. (2008) Folding *versus* aggregation: Polypeptide conformations on competing pathways. *Archives of Biochemistry and Biophysics* **469**: 100-117.
- Csermely, P. *et al.* (2010) Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. *Trends in Biochemical Sciences* **35**: 539- 546.

References II

- Bujnicki, J. (2009). **Prediction of Protein Structures, Functions, and Interactions**, John Wiley & Sons, Ltd., Chichester, p. 302.
- Tramontano, A. (2005). **The Ten Most Wanted Solutions in Protein Bioinformatics**, CRC Press UK, London, p. 186.
- Tuncbag, N., *et al.* (2009). A survey of available tools and web servers for analysis of protein-protein interactions and interfaces. *Briefings in bioinformatics* **10**: 217-232.
- Ezkurdia, I., *et al.* (2009). Progress and challenges in predicting protein-protein interaction sites. *Briefings in bioinformatics* **10**: 233-246.
- Fernández‐Recio, J. (2011). Prediction of protein binding sites and hot spots. *Computational molecular science* **6**: 680-698.
- Szilagyi, A., *et al.* (2005). Prediction of physical protein–protein interactions. *Physical biology* **2**: S1-S16.
- Moreira, I. S., *et al.* (2010). Protein-protein docking dealing with the unknown. *Journal of computational chemistry* **31**:317-342

References 71