Phylogeography of Arachnids Věra Opatová Dept. of Zoology Faculty of Sciences -Charles University Biogeography Processes responsible for current and past distributions of the biota Ecological Biogeography – species/intraspecific level - limiting characteristics of current distribution - ecological preferences, competition, host distribution…. Historical Biogeography – related taxa, family level - processes that shaped distributions patterns we observe today - geological history, climate …our resulting hypotheses are only as good as our input data and our own biases… [particularly in case of Historical Biogeography] Evolutionary theory + Biogeography Ch. Darwin (1859), AR Wallace (1869, 1878) Plate tectonics theory (Continental drift) Wegener (1912) not accepted until 1960s à Dispersal responsible for today’s distribution patters same geography X Vicariance – Croizant 1950 The organisms had the same distribution in the past (always!) - slow steady spread across continuous land - barriers appeared later What is the contribution of each process? Taxonomy/understanding of Biodiversity - what is a species, how many species there are, how are they related? Cox et al 2010 Fossil record and the lack of thereof - not rich in Arachnids, extinct lineages - difficult to assign - modern lineages in amber: Burmese (~100 Ma), Baltic (~44 Ma), Dominican (~30 Ma) Phylogeography Phylogenetics + Biogeography (Avise 2000) Geographic distribution of genetic lineages The question remains: - Which processes shaped their current and past spatial distributions Implementation of molecular methods – new perspective - geographic structure in the populations - geographic history, dispersal routes & barriers - concordant patterns among different species - conservation purposes - potential existence of cryptic species - taxonomy - molecular dating Avise 2000 Dispersal? Introduction? Vicariance? Extinction? Archaeidae Deinopidae Salticidae usually a combination of more than one factor… Dispersal in Arachnids The capability to overcome barriers differs Key role in colonizing new habitats - weak population structure in highly mobile groups - deep population structuring in sedentary groups Passive dispersal: Phoresy: pseudoscorpions, mites, Attacobius attarum Rafting – short/long distance dispersal Accidental introduction: synanthropes in advantage Airborne/wind: mites Host mediated – ticks, mites Camargo et al 2015 Atta sexdens AD M Active dispersal: Ballooning: spiders, usually long distance (efficacy varies) Sailing – short distance dispersal Walking Tumbling - Cebrennus rechenbergi Dispersal in Arachnids Jaeger 2014 Hayashi et al 2015 Phoresy Dunlop & Penney 2012 44 Ma Pfeiler et al 2009Dinocheirus arizonensis Non-vagile individual attachment to a “carrier” Colonization of temporary habitats Relatively poorly understood Phoresy - Lamprochernes chyzeri (Chernetidae) No geographic structure across Europe Shared haplotypes > 1500 km, highly effective Chrystophoriová et al 2023 Host mediated dispersal and radiation Rhipicephalus ticks Bakkes et al 2021 Bakkes et al 2021 Host-enabled dispersal events to new environments followed by local adaptations larvae on large and mobile hosts àlarger ranges, slower rates on small and less mobile hosts à smaller ranges, faster rates Rhipicephalus ticks Ballooning Aerial dispersal in spiders Long/ short distance dispersal - juveniles of large species - adults of small species common in Araneomorphae - may differ within a family uncommon in Mygalomorphae - not as effective must land in an area with favorable conditions/ be preadapted Argiope bruennichi – range expansion Krehenwinkel & Tautz (2013), Mol Ecol Krehenwinkel et al (2015), Glob Change biol Mt diversity - higher in invasive populations Body size - smaller in invasive populations Cold tolerance - differences in gene expression SNP Cheiracanthium punctorium – range expansion native populationsmicrosatelites cox 1 Initial environmental change triggered preadaptation smaller body size in expanding populations Krehenwinkel et al (2016) Sedentary/less vagile arachnids Vicariance (all scales) + some dispersal Tendencies to micro-endemism Amalgamation of Gondwana 520 – 510 Ma - southern hemisphere Laurentia, Baltica, Siberia – in the north - formed Laurasia in Paleozoic, ~ 300 Ma Late Paleozoic – Pangea formation - lasted ~ 100 Myr Pangea breakup - Central Atlantic ridge ~ 200 Ma Will & Frimmel 2018 Cox et al 2010 Pangea formation Gondwana disintegration Will & Frimmel 2018breakup from Laurasia - Central Atlantic ridge ~ 200 Ma Lower Jurassic ~ 180 Ma East/ West Gondwana breakup Upper Jurassic ~ 160 Ma India-Madagascar/Antarctica ~ 160 Ma Antarctica/Australia Lower Cretaceous ~ 140 – 130 Ma S America/Africa Upper Cretaceous ~ 80 - 90 Ma Madagascar/ India Laurasia breakup ~ 55 Ma, land bridge ~ 25 Ma S America – Antarctica – Australia land bridge up to ~ 30 Ma timing updated contiguously, controversial topics remain Will & Frimmel 2018Cox et al 2010Cox et al 2010 The movement continues ~ 5 – 10 cm/yr Laurasia breakup ~ 55 Ma, land bridge ~ 25 Ma S America – Antarctica – Australia land bridge up to ~ 30 Ma timing updated contiguously, controversial topics remain The movement continues ~ 5 – 10 cm/yr Ms. Ayanna Williams 730 cm/30 yrCox et al 2010 Solifugae Lineage distribution – Pangea break-up recent diversification in many lineages Suborders: Boreosolifugae Australosolifugae Kulkarni et al. Iscience 26.9 (2023): 107684. Palpimanoidea continental vicariance? ~ Gondwanan distribution araneophagous: modifications Wood et al (2018) MPE 127: 907-918. Archaeidae Mecysmaucheniidae Palpimanidae Ummidia continental vicariance? Opatova et al 2013 Halonoproctidae – Laurasia breakup Laurasia breakup ~ 55 Ma North American land bridge up to ~ 25 ma X X Land bridge E Gondwana Dispersal to AF Palpimanoidea continental vicariance? Wood et al (2013) Syst Biol 127: 264-284. Deinopidae continental vicariance? GAARlandia land bridge Greater Antilles and Aves Ridge – land bridge connecting S America with the Greater Antilles Eocene – Oligocene ~ 35 – 33 Ma Chamberland et al (2018) ? ? Gondwanan origin ? long-distance dispersal Supports GAARlandia Also in: Loxosceles, Sicarius Heteroctenus scorpions Not in: Tetragnatha, Selenops Chamberland et al (2018) Binford et al (2008) Crews & Esposito (2020) Čandek et al (2021) W Gondwana Deinopidae continental vicariance? GAARlandia land bridge Greater Antilles colonized 1x from S America à back colonization African origin of the Old World taxa Chamberland et al (2018) Deinopidae continental vicariance? GAARlandia land bridge Amaurobioides continental vicariance? Anyphaenidae Around the world in 8 million years - rafting Ceccarelli et al 2016 River formation, mountain uplift Primitively segmented spiders SE Asia Ganthela, Sinothela 1. Yangtze River formation (23–36.5 Ma) 2. Qinling–Dabie mountains (2.6–23 Ma) 3. Taishan Mts uplift - unsuported 4. Taihang Mts (3.6–5.3 Ma) 5. Yellow River formation (1.8–3.6 Ma) 6. Ordos bend coincide with its origin (1.6 Ma) Xu et al 2018 Mountains – in situ radiation microallopatry Buthus scorpions in Atlas Mountains Main clades overlap, subclades parapatric Habel et al 2012 Ceccarelli et al 2016 Mountains – in situ radiation microallopatry Brachiosternus scorpions in the Andes Coastal habitats stable – source of colonization Climate: Miocene transition, Glaciations Harpactocrates, Dysderidae Ground-dwelling, sedentary Western Mediterranean Bidegaray-Batista et al 2014 Climate: Aridification of Australia Idiopidae trapdoor spiders Rix et al 2017 Island biogeography: dispersal vs. vicariance Continental islands – split from a larger landmass; vicariance* + dispersal Oceanic islands – volcanic de novo origin; dispersal, introduction carrying capacity = turnover equilibrium Cox et al 2010 Oceanic islands “biodiversity and evolutionary lab” volcanic hotspot Hawaiian island chain Successive colonization abundancy of available niches à adaptive radiation colonization via: - ballooning - rafting - anthropogenic introduction Cox et al 2010 Croucher et al 2012 Hawaii Theridion grallator Distinct monophyletic clades – currently little taxa exchange older island -> younger ones – “progression rule” Rapid colonization from Oahu Juan Fernandez Linyphiidae 50 native sp. of spiders ~70 % endemic 40 % Linyphiidae 3.8 - 1 Mya Arnedo & Hormiga 2020 5 independent colonizations (Laminacauda 2x) àadaptive radiation - spatial distribution - foraging strategy Arnedo & Hormiga 2020 Arnedo & Hormiga 2020 “Old taxa on young islands dilemma” Fossil and mt rate calibration in agreement 41 Canary Islands high levels of endemic organisms Canary Islands Dysdera oniscophagous sedentary dispersal by rafting Macías-Hernández et al 2016 Canary Islands Dysdera 48 endemic species 2 x colonization 1 x radiation black – shared grey - endemic Macías-Hernández et al 2016 Arnedo et al 2007 Co-occurring species Differences in: related to prey capture different microhabitats Řezáč et al 2020 Continental Islands – geological history of the Western Mediterranean Continental Islands Parachtes - Dysderidae (generalist) Sedentary à Hercynian belt breakup Bidegaray-Batista & Arnedo 2011 Opatova et al 2016 Continental Islands– Ummidia Trapdoor spider with ballooning capability mostly vicariance Continental drift Amalgamation of Gondwana 520 – 510 Ma - southern hemisphere Laurentia, Baltica, Siberia – in the north - formed Laurasia in Paleozoic, ~ 300 Ma Late Paleozoic – Pangea formation - lasted ~ 100 Myr Pangea breakup - Central Atlantic ridge ~ 200 Ma Summary Lower Jurassic ~ 180 Ma E/W Gondwana breakup Upper Jurassic ~ 160 Ma India-Madagascar/Antarctica ~ 160 Ma Antarctica/Australia Lower Cretaceous ~ 140 – 130 Ma S America/Africa Upper Cretaceous ~ 80 - 90 Ma Madagascar/ India ~ 50 Ma India collided with Asia Mediterranean Basin Hercynian belt breakup 30 - 25Ma Baetic Rif broke of Sardinia + Corsica ~20Ma à Sardinia + Corsica collided with Italy 10 – 5 Ma final separation of Sardinia + It Messinian Salinity crisis 5.93 – 5.3 Ma 5.3 Ma Opening of Strait of Gibraltar Last glaciation: 2.58 Ma to 12 000 ya Laurasia breakup ~55 Ma N Am land bridge ~ 25 ma