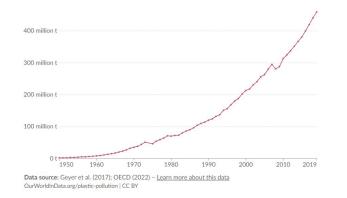
(Bio)plastics

Kudělová Eva Majerová Hana

Petrochemical plastics

- The most common types of plastics:

Polyethylene (PE) Polyvinylchloride (PVC) Polypropylene (PP) Polyurethane (PU)

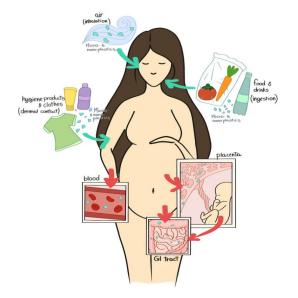


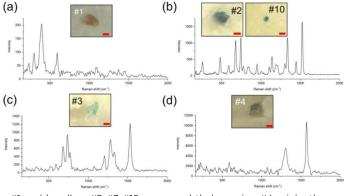
The issue of the plastics

- Environment
 - not a well-established system that can deal with the huge quantity of generated pollutants
 - the petroleum is not renewable and a scarce source
 - transition to a bio-based and biodegradable plastics

The issue of the plastics

- Economy _
 - _
- The linear plastic system based on "Take-Make-Dispose"
 - 3 ways for the disposal of plastic
 mechanical recycling
 landfilling _


 - incinerating
 - -
- The circular plastic system based on "Closed-Loop Economy"
 - Reducing, Reusing, Recycling _


The issue of the plastics

- Effect on Health
 - intake of around 250 grams of microplastics per year
 - the pigmented microplastics were found in 4 placentas out of 6
 - possible the transgenerational effect on metabolism and reproduction

#1 - oxide yellow; #2, #3, #10 - copper phthalocyanine; #4 - violanthrone

Bioplastics

2 types based on degradability:

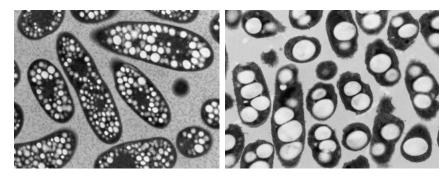
a) Non-biodegradable (Bio-based)

- biological origin but not biodegradable include
- completely similar properties to traditional plastics
- made from natural materials
 - starches will be converted into ethanol
 - then synthesized to ethylene/propylene
 - polymerization to traditional PE and PP plastics

b) Biodegradable

- completely transformed into CO₂, H₂0,
 biomass
- PLA (polylactic acid)

-


- biological raw material
- the production of plant starches
- PHAs (polyhydroxyalkanoates)
 - microbial origin

Polyhydroxyalkanoates (PHAs)

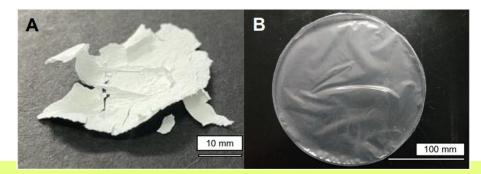
- good candidates in replacement of petrochemical plastics
- biodegradable, biocompatible, renewable, sustainable
- similar properties with conventional plastics
- synthesized by prokaryotes under conditions with high content of carbon source and limited nutrients (nitrogen)
- PHA granules functions
 - carbon and energy storage
 - stress resistance (UV radiations, high temperatures, etc.)

Polyhydroxyalkanoates

- mechanical and technological properties of PHAs depend on the monomer composition
 - homopolymers (PHB)
 - copolymers (PHBV) generally better properties
- production of bioplastics in 2020 was 2.11 million tons, which is less than 1% of the total annual production of plastics (368 million tons in 2020)
- only 1.7% of the bioplastics produced in 2020 were PHAs
 - issues:
 - 1. high production cost
 - 2. limited polymer diversity

Polyhydroxyalkanoate

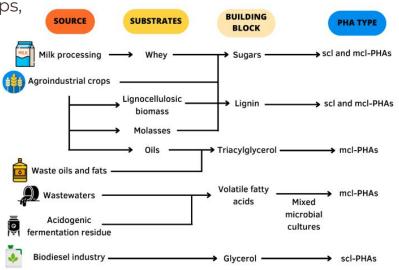
R = alkyl


Poly-(R)-3-hydroxybutyrate (PHB)

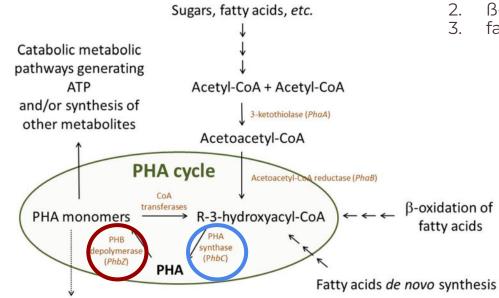
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH)

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)

Substrates


- its choice depends mainly on the organism metabolic routes, substrate cost and availability
- different substrates lead to specific types of PHAs
 - affects polymer properties and its applications

Oils and sugars from agriculture plants: starch-based crops, sugarcane, beetroot,...


Waste materials like lignocellulosic biomass, waste oils, wastewater, spent coffee grounds,...

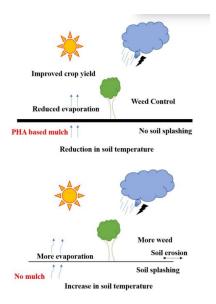
 lignocellulosic - very popular in last years, but its pretreatment can be tricky

Inorganic substrates - CO2

Metabolism

- Potent chemical chaperones
- Substrates for synthesis of other protective metabolites
- Induction of ppGpp synthesis
- Activation of alternative sigma factors such as RPoS

<u>Main pathways:</u>

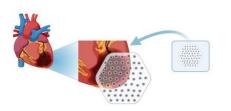

- 1. 3 reactions catalyzed by PhaA, PhaB and PhaC
- 2. B-oxidation of fatty acids
- 3. fatty acids *de novo* synthesis

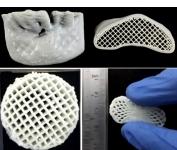
Important enzymes:

- PHA synthase (PhaC)
 - connects all pathways
 - polymerization
- PHA depolymerase
 - degradation
 - extracellular and intracellular

PHAs in Agriculture

- can be used to make soil friendly compostable greenhouse films
- mulch aids in better soil integrity, pollution control, moisture retention, and weed control




PHAs in Medical Devices

- Implant material
 - biodegradable, biocompatible, nontoxic
 - tissue friendly with blood, bone and human cell lines
- Various therapeutics
 - cardiovascular patches
 - providing repair and support to the infarcted tissue post myocardial infarction
 - wound dressing
 - can reduce the inflammation, enhance the angiogenic properties of the skin, and facilitate its healing

- 3D custom-made bone marrow scaffolds

 combine 3D printed bone tissue engineering scaffolds with stem cells

Control

PHA as a Coating Agent

- their distinctive characteristics suggest a potential application as a softener in biopolymeric blends
- water resistant makes them perfect for packaging materials such as milk cartons, sanitary towels, shampoo bottles etc.
- antimicrobial PHA materials containing silver nanoparticles

Thank you for your attention!