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5.1 Historical outline of methods studying thermal behavior 

Early principles of thermometry [1–3] were already established by Galileo Galilei (1564–1642) whose idea was 
to make use of the volume changes of gases while observing the alongside changes in thermal state of given bod-
ies (air thermometer). The first liquid thermometer was likely constructed by J. Rey in 1631 and the description 
of mercury thermometer is ascribed to Daniel G. Fahrenheit in 1724. The elaboration of the earliest ice calorim-
eter is credited to A. L. Lavoisier and Pierre S. Laplace around 1790 [4, 5] coining the term from the Latin 
“calor” and the Greek “meter”. Sourced on the work by B. Telesio (1509–1588) [6], Jan A. Comenius 
(1592‒1670) [7] made use of the term “caloric” when describing the importance of concepts of cold and warm 
[1].  

A novel method of combustion calorimeter emerged in Copenhagen [8–10] and consequent setup of Bunsen 
calorimetry [11] was based on the replacement of measurement of the mass of melted ice with that designed to 
volume changes (i.e. ware phase transition modified by Wojciech Swietoslawski (1881–1968) [12]). Further 
achievement was the introduction of low temperature calorimetry in 1892 upon the development of a vacuum 
vessel by James Dewar (1842–1923) first determining specific heats of metals at low temperatures. In the turn of 
twenties Albert Tian (1881–1974) and Eduard Calvet (1895–1966) started methodical investigation aimed at the 
application of the Peltier and Joule effects to the compensation of heat generated during calorimetric studies. 
Categorization of calorimeters according to the temperature difference between the sample-block TB and sur-
rounding jacket TJ was suggested by Velíšek [15, 16]. 

Modern thermometry introduced the term thermal analysis dated back to the 18th century when the tempera-
ture became better understood as an observable and experimentally monitorable quantity. First note came from 
Uppsala in 1829 where Friedrik Rudberg (1800–1839) recorded inverse cooling-rate data for lead, tin, zinc and 
various alloys. The bare equipment consisted of an iron crucible suspended by thin platinum wire at the center of 
a large double-walled iron vessel provided with a tight-fitting, dished with iron lid, through which passed a 
thermometer with its bulb in the sample. The inner surface of the outer container and the outer surface of the 
crucible were blackened to permit the maximum achievement of heat transfer. The spaces between two walls of 
the outer large vessel, as well as the top lid, were filled with snow to ensure that the inner walls were always kept 
at zero temperature. In this way a controlled temperature program was ensured once the crucible with molten 
metal or alloy had been positioned inside and the lid closed. Once the experiment was set up Rudberg noted and 
tabulated the times taken by the mercury in thermometer to fall through each 10 degrees interval. The longest in-
terval then included the freezing point.  

The next experiment that falls into the category of thermal analysis was done in 1837 by Frankenheim who 
described a method of determining cooling curves (temperature vs. time). This method was later associated with 
the so-called Hannay’s time method, when temperature is increased continuously (such a plot would resemble 
what we now call ‘isothermal mass-change curves’). In 1883, Henry L. Le Chatelier (1850–1936) adopted a 
somehow more fruitful approach immersing the bulb of thermometer within the sample in an oil bath, which 
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maintained a constant temperature difference (usually 20° between the thermometer and another one placed in 
the bath). He plotted the time vs. temperature curve easily convertible to the sample vs. environmental tempera-
tures, factually introducing the ‘constant-rate’ or ‘quasi-isothermal’ program.  

The development of thermocouple, as an accurate temperature measuring device, was rapidly followed by 
Floris Osmond (1849–1912) who in 1886 investigated the heating and cooling behavior of iron and steel with a 
view to elucidate the effects of carbon so that he factually introduced thermal analysis into the most important 
field: metallurgy. However, in 1891, William C. Roberts-Austen (1843–1902) [18] was known to construct a de-
vice to give a continuous record of the output from thermocouple and he termed it as ‘Thermoelectric Pyrome-
ter’.  

Though the sample holder was a design reminiscent of modern equipment, its capacity was extremely large 
decreasing thus the sensitivity but giving a rather good measure for reproducibility. It was quickly realized that a 
galvanometer was rather insensitive to pick up small thermal effects. This disadvantage was improved by cou-
pling two galvanometers in parallel and later the reflected light beam was directed to the light-tight (dark) box 
together with the slit system enabling exposition of the repositioned photographic plate. In 1899 Stanfield pub-
lished heating curves for gold and almost stumbled upon the idea of DTA (Differential Thermal Analysis) when 
maintaining the ‘cold’ junction at a constant elevated temperature measuring thus the differences between two 
high temperatures. Roberts-Austen consequently devised the system of measuring the temperature difference be-
tween the sample and a suitable reference material placed side-by-side in the same thermal environment, thus 
initiating development of DTA instruments. Among other well-known inventors, Russian Nikolay S. Kurnakov 
(1860–1941) [19] should be noticed as he improved registration, building his pyrometer on the photographic, 
continuously recording drum, which, however, restricted his recording time to mere 10 minutes.  

The entire term thermal analysis was finally coined by Gustav Tammann (1861–1938) [20] around 1904 who 
demonstrated theoretically the value of cooling curves in phase-equilibrium studies of binary systems. By 1908, 
the heating or cooling curves, along with their rate derivatives and inverse curves, acquired enough sufficient 
importance to warrant a first review and a more detailed theoretical inspection was given by George K. Burgess 
(1874‒1932) [21]. Not less important was the development of heat sources where coal and gas were almost 
completely replaced by electricity as the only source of controllable heat. In 1895, Georges A. A. Charpy 
(1865‒1945) described in detail the construction of wire-wound, electrical resistance, tube furnaces that virtually 
revolutionized heating and temperature control. Indeed the heating rate control had to be active to avoid possibil-
ity of irregularities; however, little attention was paid to it as long as the heat source delivered a smooth tempera-
ture-time curve. All early users mention temperature control by altering the current and many descriptions indi-
cate that this was done by manual or clockwork-based operation of a rheostat in series with the furnace winding, 
the system in practical use up to late fifties.  

The first automatic control was introduced by K. Friedrich in 1912 using a resistance box with a specially 
shaped, clock-driven stepped cam on top. As the cam rotated it displaced a pawl outwards at each step and this in 
turn caused the brush to move on to the next contact, thus reducing the resistance of furnace winding. Suitable 
choice of resistance and profiling of the cam achieved the desired heating profile. The sample size was also re-
duced from 25 g down to 2.5 g, to decrease the uncertainty in melting point determination from about 2 K to 
0.5 K. Rates of about 20 K/min were fairly common during the early period later decreased to about quarter. It 
was G. K. Burgess [21] who considered meaning of various curves in detail and concluded that the area of the 
inverse-rate curve is proportional to the quantity of heat generated divided by the rate of cooling. 

Only few papers published in the period up to 1920 gave little experimental details so that W. P. White [22] 
was first to show theoretically in 1909 the desirability of smaller samples describing more exhaustively the effect 
of experimental variables on the shape of heating curves as well as the influence of temperature gradients and 
heat fluxes taking place within both the furnace and the sample. It is obvious that DTA was initially more an 
empirical technique, although the experimentalists were generally aware of its quantitative potentialities going 
back to historic times of Isaac Newton (1642–1727) [23] who published his temperature scale in 1701, the sig-
nificance of which lies both in its range of temperature and in its instrumentation presenting also the famous 
Newton’s Law of Cooling. However, the foremost milestone in the theory of heat propagation was provided by 
Jean B. J. Fourier (1768–1830) [24] who initiated the investigation of Fourier series and their application to 
problems of heat transfer. The early quantitative studies were treated semi-empirically and based more on in-
stinctive reasoning. In 1939 F. H. Norton published his classical paper [25] on techniques where he made rather 
excessive claims for its value both in the identification and quantitative analysis exemplifying clay mixtures. The 
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first more detailed theories, absent from restrictions, became accessible in a series of papers [25–32] and later 
books [33–40], historical roots are shown in [1, 2, 41–46].  

Recently, the commercial DTA instruments are often classified as a double non-stationary calorimeter 
[41‒44] in which the thermal behaviour of the sample is compared with a correspondingly mounted, inert refer-
ence. It implies control of heat flux from surroundings and heat itself is understood to be a kind of physical-
chemical reagent, which, however, could not be directly measured but calculated on the basis of the measurable 
temperature gradients. It should be noted that heat flow mediated by mass-less phonons so that the inherent flux 
does not exhibit inertia, as is the case for the flow of electrons. The thermal inertia of apparatus (as observed in 
DTA experiments) is thus caused by heating a real body and is affected by the real properties of materials form-
ing the sample under study. The quandary of thermal inertia term in the DTA equation was first noticed by M. M. 
Faktor, R. Hanks [47] and detailed in consequent work of A. P. Grey [48] and P. Holba and J. Šesták [49, 50] 
and is the subject of our further analysis. 

5.2 DTA equation and its testing by rectangular heat pulse  

Starting from the analysis of the heat transfer process under the conditions of DTA apparatus and using ideas of 
Faktor & Hanks [47] the simple balances of heat fluxes for sample and reference holders were found [49, 50]: 

Sample holder: ( ) ( ) ( )S
S W S S td d d dPK T T C T t H tξ− = − ∆  (5.1) 

Reference holder: ( ) ( )R
R W R Rd dPK T T C T t− =  (5.2) 

where KS, KR are the coefficients of heat transfer between the furnace wall (with temperature TW) on one side 
and the sample holder (with temperature TS) and the reference holder (with temperature TR) on the other side, re-
spectively; S

PC  and R
PC  are the heat capacities of sample holder (including sample) and reference holder (includ-

ing reference material); ∆ tH is the enthalpy change of phase transition (positive for endothermic process) and 
dξ/dt is the rate of the transition (ξ is the progress variable or extent of transition and t means time). 

From the balances, the DTA equation (expressing temperature difference ∆ TDTA between the sample and the 
reference holders) was derived in the form: 

 S R S
DTA W R t

DTA

1 d d( ) ( )
d dP P P

TT K T T C C C H
K t t

ξ∆ ∆ = ∆ − − − Φ − + ∆ 
 

 (5.3) 

where ΔTDTA = TS – TR; ΔK = KS – KR; Φ = dTR/dt (linear heating rate); KDTA = KR („apparatus constant“ of DTA 
depending on temperature TR and heating rate Φ). 

The heat capacity of sample S
PC  can be expressed as depending on the extent of transition ξ 

 S S S
in tP P PC C Cξ= + ∆  (5.4) 

where S
inPC  is the initial heat capacity of sample (including sample holder) and S

t PC∆  is the heat capacity change 
due to transition, for which Person–Kirchhoff equation is valid: 

 S t
t P

P

H
C

T
∂∆ ∆ = ∂ 

 (5.5) 
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Fig. 5.1 Arrangement of the sample (S) and reference (R) holders with respect to the furnace wall. 

 
Fig. 5.2 Correction of DTA curve with respect to thermal inertia  

Such a rather important expediency of the heat inertia appearance in the frame of DTA equation remained 
overlooked in most, even recent books [53], with few exceptions [16, 43, 44] so it has been a remaining question 
if it is mere theoretical fiction or a real experimental output. Therefore, an artificial exothermic process was ex-
perimentally initiated by introducing a rectangular heat pulse inside sample holder of DTA apparatus [52] and 
the equation of heat flux balances (DTA equation) was used to desmeare the resulting DTA curve and to recon-
struct the applied heat pulse.  

The result of the mentioned procedure is shown in Fig. 5.4. Correction made using the DTA equation gives 
the desmeared curve more similar to the original pulse, but the differences remain near the onset and the end of 
the heat pulse. Therefore, the question arose what is the cause of this insufficiency.  

 

 
Fig. 5.3 Use of DTA equation (5.3) for reconstructing the heat pulse from DTA curve as a response to artificial rectangular heat 
pulse [52]. The greatest differences between the original and reconstructed heat process is in the fields near to the onset and the end 
of rectangular pulse, where the heat flux is abruptly changed (q ≡ d2q/dt2 → ±∞). 
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The most probable origin of the incomplete desmearing seems to be a simplification used in the formulation 
of heat flux balances, where only single temperatures (TS and TR) are used to characterize the whole sample and 
the whole reference. In fact, the temperature of any material body exposed to heating (or cooling) even if the ma-
terial is thermally inert (not exhibiting any heat consuming or heat generating process – reaction or transition) is 
not uniform so that the „termoscopic state“ of the body should be described by a temperature field T(x, y, z) – by 
a dependence of an instantaneous local temperature T on space coordinates x, y, z. The estimation of this „non-
uniformity of temperature“ and its impact on the shape of DTA curve represents the main objective of this chap-
ter.  

5.3 Temperature fields inside an inert material in a form of infinite cylinder 

The simplest way to analyze the influence of nonuniform temperature field on the shape of DTA curve is to start 
from the simplifying assumption that both the sample and the reference have a form of infinite cylinder with the 
same radius rE. Then the local temperature T can be represented as a function of only one dimension – local radi-
us r. Consider two cylinders of infinite length denoted as R (reference) and S (sample) centered on the axes of 
two identical vertical tube furnaces. Internal cylindric walls of both furnaces have at any moment the same tem-
perature TW which guarantees a linear increase of temperature TRE detected at surface of cylinder formed by ref-
erence material corresponding to a constant heating rate ΦRE = dTRE/dt. At the surface of the sample, the temper-
ature TSE is detected and the difference ΔT = TSE – TRE is then an output signal recorded as the DTA curve.  

Such conditions make it possible to represent the temperature fields by one-dimensional functions TR(r) for 
the reference and TS(r) for the reference and the sample, respectively, as shown in Fig. 5.5. 

  

 
Fig. 5.4 Arrangement of an idealized DTA experiment with infinitely long cylinders formed from reference material (with surface 
temperature TRE) and from sample (with TSE) exposed to heated furnace walls (with the same temperature TW) 

At the idealized conditions mentioned above, no heat transfer between the sample and the reference exists and 
the apparatus constant KDTA should have the same value for the sample as for the reference. However, the pa-
rameter KDTA depends in general on temperature, particularly at higher temperatures where the heat transfer by 
radiation takes place. If we consider a heat flux q̇SE (in W/m) between the furnace wall (with temperature TW) 
and the external surface of the sample (with temperature TSE) related to a unit length of an infinite cylinder with 
the radius rE as consisting of two parts: the conductive q̇cond and the radiation q̇rad fluxes 

 
( )

( ) ( )
SE DTA W SE cond rad

4 4
E atm W SE W W SE2

q K T T q q

r T T T Tπ λ σ

= − = +

 = − + ℑ − 

  

 (5.6) 

where λatm is the thermal conductivity (in W/m/K) of atmosphere between the furnace wall and the sample, σ is 
the Stefan–Boltzmann constant (σ = 5.67 × 10–8 W m–1 K–4) and ℑW is a dimensionless factor reflecting the shape 
and emitivity character of the system furnace-sample, then the apparent heat transfer coefficient KDTA – „appa-
ratus constant“ (in W/K) – is found as the third-order polynomial function of temperature TSE 
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 ( ) ( )( )2 2
DTA SE E atm W W SE W SE2K T r T T T Tπ λ σ = + ℑ + +  (5.7) 

where the decomposition (a4 – b4) = (a2 – b2)(a2 + b2) = (a – b)(a + b)(a2 + b2) is used. 
If an equation analogous to (5.7) is used for the temperature at the reference surface TRE, then the difference 

ΔKDTA is estimated by approximation using the first term of Taylor series: 

 
( ) ( )

( )

DTA
DTA DTA SE DTA RE DTA

2 2atm
E W W W SE SE DTA

d
d

d
2 2 3

d

KK K T K T T
T

r T T T T T
T
λ

π σ

∆ = − ≈ ∆

 ≈ + ℑ + + ∆  

 (5.8). 

The afore-mentioned dependence of apparatus constant KDTA on temperature (TSE) as well as on temperature dif-
ference ΔTDTA will be neglected in the following considerations focused on the effect of temperature field 
nonuniformity on the shape of DTA curves. 

5.3.1 Stabilized temperature profile in homogeneous substance at linear heating  

Consider a reference material which does not exhibit any reaction or transition within the temperatures region 
under study and assume its molar heat capacity R

,mPC  (or specific heat capacity cR related to unit mass), molar 
volume R

mV  (or density ρR and molar mass MR) and heat conductivity λR are independent on temperature T. The 
heat capacity of the reference CR related to unit volume is then given by 

 
R R

,m ,m R 3
R R RR

Rm

in J (K m )P PC C
C c

MV
ρ

ρ= = =  (5.9) 

and the thermal diffusivity αR is given as 

 2R
R

R
in m s

C
λ

α =  (5.10) 

It follows from the Fourier equation that the heat flux q̇RE entering the reference cylinder is proportional to the 
temperature gradient at the surface 

ERE R(d d )r rg T r == , where TR(r) means the temperature field in the reference 
and rE is the external radius of the cylinder: 

 RE E RE R2q r gπ λ=  (5.11) 

If the introducing flux is consumed to heat the reference substance in the whole volume of cylinder: 

 
E E

R R
RE R R

0 0

d ( ) d ( )
2 d 2 d

d d

r r
T r T rq C r r C r r

t t
π π= =∫ ∫  (5.12) 

it follows for any cylindrical shell of thickness dr at a distance r from the cylinder axis  

 
2

R R R
R R2

d ( ) d ( ) d ( )1
d dd

T r T r T rC
r r tr

λ
 

+ =  
 

 (5.13) 

Using (5.10) the following differential equation is found: 
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2

R R R
2

R

d ( ) d ( ) d ( )1 1
d dd

T r T r T r
r r tr α

+ =  (5.14) 

The actual local temperature TR inside the reference is a function of time t and the position r (measured as the 
distance from axis): TR(r, t). In the case of temperature independent thermal diffusivity αR, the local temperature 
TR(r, t) can be expressed as a sum of time-dependent temperature on the reference surface TRE(t) and of the tem-
perature deviation θR(r) depending only on the distance from axis r 

 ( ) ( ) ( )R RE R,T t r T t rθ= +  (5.15) 

Then it follows for the field of temperature gradients gR(r) 

 ( ) ( ) ( )R R
R

d d
d d

T r r
g r

r r
θ

= =  (5.16) 

and for the local heating rate dTR(r)/dt 

 ( )R RE
RE

d d
const

d d
T r T

t t
= = Φ =  (5.17) 

The differential equation (5.14) is then simplified into 

 
( ) ( )2

R R
RE2

R

d d1 1
dd

r r
r rr

θ θ
α

+ = Φ  (5.18) 

i.e. ( ) ( )R R RE

R

d
d

g r g r
r r α

Φ
+ =  (5.19) 

and the following solution is found 

 ( ) 2 2RE
R E

R
( )

4
r r rθ

α
Φ

= − −  (5.20) 

The temperature field in linearly heated reference is then defined by  

 ( ) 2 2RE
R RE E

RE
( )

4
T r T r r

α
Φ

= − −  (5.21) 

and the field of temperature gradient gR(r) turns out to be linear in r 

 ( ) RE
R

R2
rg r

α
Φ

=  (5.22) 

The temperature field established at linear heating (or cooling) rate given by Eq. (5.21) will be referred as the 
„stabilized temperature profile“. 

The stabilized temperature profile corresponding to equation (5.21) is to be expected at any material (sub-
stance) under the condition of stabilized linear heating in the temperature range where no reaction or transition 
can occur. 
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Fig. 5.5 Stabilized temperature profile TR(r) and gradient profile gR(r) at linear heating (ΦRE > 0) and linear cooling (ΦRE < 0) in in-
finite cylinder with external radius rE. 

5.3.2 Stabilized temperature profile in a cylinder composed of core material surrounded by 
coaxial jacket (holder) material 

If a sample material is inserted into an infinitely long cylindrical holder with a thickness δH then the external sur-
face exposed to heating has the radius rH = rE + δH. Consider the holder material has a heat capacity (related to a 
unit volume) CH and a heat conductivity λH. Heat flux q̇HE coming from outside into the holder (of a unit length) 
with a surface temperature THER = TH(rH) given as 

 HE H H HE2q r gπ λ=  (5.23) 

is partly consumed to increase the local temperature TH(r) in the range rH ≥ r ≥ rE while the rest of the heat flux 
q̇RE into the reference: 

 
H

E

H
HE H RE

d ( )
2 d

d

r

r

T rq C r r q
t

π= +∫   (5.24) 

At the interface between the holder and the reference material (at the radius rE) the heat flux from the holder into 
the reference q̇HR must be equal to the heat flux q̇RE (given by Eq. 5.11), so that: 

 HR E H HR E R RE RE2 2q r g r g qπ λ π λ= = =   (5.25) 

It follows that the gradient gHR at the internal surface of the holder is determined by 

 R
HR RE

H
g g λ

λ
=  (5.26) 
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Assuming a stabilized temperature field at linear heating (or cooling) the local heating rates are uniform and 
equal to ΦRE: 

 ( )H RE
RE

d d
d d

T r T
t t

= = Φ  (5.27) 

Neglecting the temperature dependence of CH and λH, the stabilized temperature field TH(r) can be derived in the 
following form: 

 ( ) 2 2RE
H RE E

H
( )

4
T r T r r

α
Φ

= + −  (5.28) 

where αH = λH/CH is the thermal diffusivity of the holder material. The temperature at the external surface of the 
holder THER is then related to temperature TRE by the following formula 

 2 2RE
HER RE H E

H
( )

4
T T r r

α
Φ

= + −  (5.29) 

  
 

Fig. 5.6 Stabilized temperature profiles TR(r), TH(r) and gradient profiles gR(r), gH(r) at linear heating (ΦRE > 0) in an infinite cylin-
der with external radius of holder (jacket) rH and external radius of reference (core) rE in the case when the thermal diffusivity of 
holder material αH is greater than that of the reference material αR (αH > αR). 

5.3.3 Temperature profile in a hollow cylinder at stationary (steady) heat flow  

Consider a hollow cylinder with an infinite length, internal (inner) radius rI and outer radius rE which is made of 
a material R and it separates two surroundings: the outer with temperature TE and the inner with temperature TI. 
If a stationary (steady) state is reached then the heat flux q̇R(r) through the cylindrical shell at any distance r 
from the axis should be the same so that: 
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 R R R st( ) 2 ( ) constq r rg rπ λ= =  (5.30) 

where λR is the heat conductivity of material R and gR(r) is the local temperature gradient. It follows from Eq. 
5.30 that the local gradient must be proportional to reciprocal of distance r 

 stR
R

R

constd ( ) 1( )
d 2

T rg r
r rπλ

= =  (5.31) 

which implies the differential equation 

 st
R

R

const 1d ( ) d
2

T r r
rπλ

=  (5.32) 

Assuming λR is independent from temperature, the following relation is found 

 
E

I

st st E
E I I

R R I

const const
d ln ln

2 2

r

r

rT T r T
rπλ πλ

= + = +∫  (5.33) 

The unknown constant constst is thus determined from Eq. 5.33 

 E I
st R

E I
const 2

ln
T T

r r
πλ

−
=  (5.34) 

and the steady-state temperature profile TR(r) is derived as 

 
I

r
E I I

R I I E I
E I E I

ln
( ) d ln ( )

ln ln
r

T T r rT r r T T T T
r r r r
−

= + = + −∫  (5.35) 

whereas the radial profile of steady-state gradient is determined as 

 R E I E I
R

E I E I

d ( ) d ln 1( )
d ln d ln

T r T T T Trg r
r r r r r r r

− −
= = =  (5.36) 

 
Fig. 5.7 Stationary temperature profile TR(r) and gradient profile gR(r) in hollow cylinder with outer radius rE and inner radius rI sep-
arating outer reservoir with temperature TE and inner reservoir with temperature TI in case rI = rE/2 and TE > TI  
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5.4 Temperature profile in a sample exhibiting first-order phase transition 

Consider a sample in the form of infinite cylinder with external radius rE. The sample exhibits an endothermic 
first-order phase transition with the equilibrium transition temperature Tt and molar enthalpy change ΔtHm. Dur-
ing the transition, the initial phase ϕi with molar volume i

mV , molar heat capacity i
,mPC  and heat conductivity λi is 

changed into the final phase ϕf with the respective quantities f
mV , f

,mPC  and λf. The overall extent of transition ξG is 
determined as fraction of molar amount of the final phase Nf (molar amount of the transformed part of sample) 
referred to the whole sample: 

 f
G

i f

N
N N

ξ =
+

 (5.37) 

where Ni is molar amount of the nontransformed part of sample (molar amount of remaining initial phase).  
To avoid the problems of changing radius due to molar volume change at the transition, it is assumed that the 

transition does not change the sample volume: i f
m mV V= ; ΔtVm = 0.  

When the sample is exposed to a linear heating then four stages can be distinguished with respect to the tem-
perature profile inside the sample.  

I. Temperature at any part of the sample is lower than the (equilibrium) transition temperature Tt > T so that 
the stabilized temperature profile occurs inside the sample in the form 

 ( ) 2 2RE
i SE E

i
( )

4
T r T r r

α
Φ

= − −  (5.38) 

where i i
i i m ,mPV Cα λ=  represents the thermal diffusivity of the initial phase φi, TSE is the temperature de-

tected on the sample surface and ΦRE ≈ dTSE/dt is the applied linear heating rate. 

II. Temperature higher than Tt in a part of the sample, the phase transition is in progress and the extent of 
transition inside the whole is lower than unity (0 < ξG < 1). The temperature profile is not stabilized since 
it is affected by a „heat sink“ heat due to the running endothermic transition. 

III. Temperature at any part of the sample is higher than Tt and the extent of transition is equal to unity; how-
ever, the temperature profile is not yet stabilized but it is tending to reach the stabilized state.  

IV. The stabilized temperature profile after the transition is reached in the form: 

 ( ) 2 2RE
f SE E

f
( )

4
T r T r r

α
Φ

= − −  (5.39) 

where f f
f f m ,mPV Cα λ=  represents the thermal diffusivity of the final phase ϕf.  

The thermal behaviour of the sample upon the transition can be approached using two different models; a 
continuous and a discontinuous one. 

5.4.1 Continuous model of phase transition 

For the sample under study in the form of an infinite cylinder with the radius rE the Fourier law applied to the 
reference by (5.13) should be modified in order to involve the heat consumed by endothermic transition whose 
local extent ξr(r) and local temperature TS(r) inside the sample are functions of the radius r: 
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S2

,mS S S t m r
S2 S S

m m

d ( ) d ( ) d ( ) d ( )1
d d dd

PCT r T r T r H r
r r t tr V V

ξ
λ

  ∆
+ = +  

 
 (5.40) 

where ∆tHm stands for the enthalpy change associated with the transition. For the sake of simplicity, the proper-
ties of initial ϕi and final ϕf phases are assumed to be equal such that 

 S i f S i f
S i f ,m ,m ,m m m m,P P PC C C V V Vλ λ λ= = = = = =  

and hence 

 
S

S m
S i fS

,mP

V
C
λ

α α α= = =  (5.41) 

Eq. 5.40 can be thus rewritten into the form 

 
2

S S S t m r
S2 S

,m

d ( ) d ( ) d ( ) d ( )1
d d dd P

T r T r T r H r
r r t tr C

ξ
α

   ∆
+ = +        

 (5.42) 

For the rate of local transition dξr(r)/dt the simplest model could be applied starting from the idea the rate is 
proportional to „overheating“ of a given cylindrical shell, i.e. to the difference between the local temperature and 
the equilibrium transition temperature: (TS(r) − Tt) – and to the local fraction of the non-transformed substance 
(initial phase ϕi): (1 – ξr(r))  

 ( )( )r
S t r

d ( )
( ) 1 ( )

d
r k T r T r

t ξ
ξ

ξ= − −  (5.43) 

Substituting Eq. (5.43) into Eq. (5.42) we obtain 

 ( )( )
2

S S S
S hc S t2

d ( ) d ( ) d ( )1 ( ) 1 ( )
d dd r

T r T r T r
R k T r T r

r r tr ξα ξ
   + = + − −       

 (5.44) 

where S
hc t m ,mPR H C= ∆ .  

Solving the differential equation (5.44) for the model values Tt = 800 °C, Φ = 0.2 K/s, λS = 0.02 W cm–1 K–1, 
S S 3 1

,m m 4 J cm KPC V − −= , S 3
t m m 400 J cmH V −∆ = , and KDTA = 1 W cm–1 K–1, using the software for solving par-

tial differential equations [56] the results on TS profiles, the local extent of transition ξr as well as the respective 
rates have been found as it is shown in Figs. 5.8–5.9. 
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Fig. 5.8 Local temperatures TS(r) (left) and local extents of transition ξr(r) (right) in the sample at various times according to the 
„continuous model“ (Eq. 5.44). The transition starts at t = 260 s. Dashed lines in the left part represent the stabilized profiles corre-
sponding to the given surface temperatures (without any transition).  

  
Fig. 5.9 Profiles of rates of local temperature change dTS(r)/dt (left – applied heating rate Φ = 0.2 K/s as dotted line) and rates of the 
local extent of transition dξr(r)/dt (right) in the sample at various times according to the „continuous model“ (Eq. 5.44)  

A simultaneous solution of the differential equations (5.13) and (5.44) for the reference and the sample, re-
spectively, under simplifying conditions CR = CS and λR = λS, yields the local temperature profiles of reference 
TR(r) and TS(r), as well as the difference between TSE = TS(r = rE) and TRE = TR(r = rE) representing the DTA dif-
ference 

 DTA SE RE S E R E( ) ( )T T T T r r T r r∆ = − = = − =  (5.45) 

If we apply the DTA equation (5.3), which after simplification expressed by conditions ΔK = 0 and S R
P PC C=  

assumes the form 

 
S GDTA

t

DTA
DTA

dd
d dP
TC H

t tT
K

ξ∆
+ ∆

∆ =  (5.46) 

where S 2 2 S S
E S E ,m m( )P PC r C r C Vπ π= =  and 2 S

t E t m m( )H r H Vπ∆ = ∆ , we can evaluate a desmeared DTA curve cor-
rected for the first term on the right-hand side of Eq. (5.46)  
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S GDTA

t

corr DTA
DTA DTA

dd
d dP
TC H

t tT T
K K

ξ∆
∆

∆ = ∆ − =  (5.47) 

The mentioned correction is shown in Fig. 5.10. 
 

 
Fig. 5.10 DTA curve calculated from „continuous model“ as ΔTDTA = TSE − TRE (solid line) and the corrected (desmeared) DTA line 
obtained as ΔTcorr through Eq. 5.47 (dashed line). Dotted line represents the correction term S

DTA DTA(d d )PC T t K∆ .  

However, a properly desmeared DTA curve should correspond to the relation  

 G
prop t

DTA

d 1
d

T H
t K
ξ

∆ = ∆  (5.48) 

where the value of global (overall) extent of transition ξG of the cylinder-shaped sample is given as the integral 

 
E

G r2
E 0

1 ( ) d
r

r r r
r

ξ ξ= ∫  (5.49) 

and, correspondingly, 

 
E

G r
2

E 0

d d ( )1 d
d d

r
r r r

t tr
ξ ξ

= ∫  (5.50) 

Substituting (dξG/dt) as obtained by integration (5.50) into (5.48) and subtracting ΔTprop from data calculated 
by „continuous model“ (see right panel of Fig. 5.9) it provides an evidently different „correction curve“ com-
pared to Eq. (5.47) as shown in Figure 5.11. This difference between „on-surface-measured“ DTA and the „ide-
al“ DTA curve should be determined as  

 
E

S R
DTA prop

0

d ( ) d ( )
d d

r
T r T rT T r dr

t t
 ∆ − ∆ = −  ∫  (5.51) 
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Fig. 5.11 Correction curves obtained from „DTA equation“ Eq. 5.47 using differences of surface temperatures (dashed line: ΔTcorr –
 ΔTDTA) and from Eq. 5.51 using differences between temperature integrals (solid line: ΔTprop – ΔTDTA). The corresponding evolution 
of an integral (global) extent of conversion ξG is shown by dotted curve.  

  
Fig. 5.12 DTA curve (ΔTDTA) obtained from continuous model (solid line: ΔTDTA), correction line obtained from integral temperature 
differences (dot-dashed line: ΔTprop – ΔTDTA) and the „properly corrected“ DTA curve (ΔTprop)  

Comparing Fig. 5.12 and Fig. 5.10 the conclusion follows – the correction of DTA curves derived from tem-
peratures measured on the surface of samples can be insufficient with respect to the correction necessary to find 
the actual (true) course of the process (transition) under study. 

5.4.2 Discontinuous model of a phase transition 

A discontinuous model of phase transition can be suggested based on the idea of moving interface between the 
initial and the final phase. The interface formed by a cylindrical surface with a radius rt moving from external 
surface (at rt = rE) to the center (rt = 0) separates the transformed part of sample (final phase ϕf) from the un-
transformed part (initial phase ϕf). In the simplest model the temperature of the interface (at r = rt) is equal to the 
temperature of equilibrium transition Tt. The temperatures Tf(r) in the transformed part (rE > r > rt) are higher 
than Tt, while temperatures Ti(r) in the untransformed part (rt > r > 0) are lower than Tt.  

If the interface propagation rate is drt/dt (with a negative value as rt is decreasing during the transition) then 
the rate of the global extent of transition dξG/dt equals to 

 G t
t2

E

d d2
d d

r
r

t tr
ξ  = −  

 
 (5.52), 
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as the ratio of the transformed volume of sample Vf to the whole sample volume VS is given by 

 
2 2 2

E t tf
G2 2

S E E

( )
1

r r rV
V r r

π
ξ

π
−

= = − =  (5.53) 

The heat flux SEq  is coming into the sample through the external surface at a temperature TSE 

 SE DTA W SE E SE S( ) 2q K T T r gπ λ= − =  (5.54) 

where gSE represents the temperature gradient in the sample right on the external surface. This heat flux is then 
consumed 

a) to increase the temperature field Tf(r) in the transformed part of sample (consumed flux cfq ), 
b) to supply the heat for the endothermic transition taking place at temperature Tt (consumed flux ctq ) and 
c) to increase the temperature field Ti(r) in the untransformed part of sample (consumed flux ciq ) 

so that 

 SE cf ct ciq q q q= + +     (5.55) 

where the respective fluxes are given by 

 
E

t

f
cf S

d ( )
2 d

d

r

r

T rq C r r
t

π  =  
 ∫  (5.56) 

 t G
ct t

d d
2

d d
r

q Hr H
t t

ξ
π  = ∆ = ∆ 

 
  (5.57) 

 
t

i
ci S

0

d ( )
2 d

d

r
T rq C r r

t
π= ∫  (5.58) 

On the other hand the heat flux ftq  coming from transformed (final) phase to the moving interface is deter-
mined as 

 ft t ft S ct ci2q r g q qπ λ= = +    (5.59) 

where 
tft f(d ( ) d )r rg T r r ==  and the heat flux q̇ft leaving the interface into the untransformed (initial) phase is giv-

en by 

 it t it S ci2q r g qπ λ= =   (5.60) 

where 
tit i(d ( ) d )r rg T r r == . 

Combining (5.54–5.59)  

 
E

t

f
SE cf ft E SE S t ft S S

d ( )
2 2 2 d

d

r

r

T rq q q r g r g C r r
t

π λ π λ π= + ↔ = + ∫    (5.61) 

 
E

t

f
cf E SE t ft

S

d ( )1 d
d

r

r

T rq r r r g r g
tα

= = −∫  (5.62) 
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Fig. 5.13 Heat flux profiles in a cylindrical sample during transition according to discontinuous model  

Dividing expressions for local heat fluxes by the local perimeter 2πr and by the thermal conductivity λS, the 
expression for local temperature gradient in the transformed (final) phase gf(r) is obtained as: 

 
t

ft
f f

S S

1( ) ( ) d
2

r

r

q
g r r r r

r rπ λ α
= + Φ∫



  

or with respect to (5.60) as 

 
t

f t ft f
S

1 1( ) ( ) d
r

r

g r r g r r r
r α

 
 = + Φ
 
 

∫   (5.63) 

where Φf(r) = (dTf(r)/dt). Similarly, for the local temperature gradient in the untransformed (initial) phase gi(r) as 

 i i
S 0

1( ) ( ) d
r

g r r r r
rα

= Φ∫   (5.64) 

where Φi(r) = (dTi(r)/dt).   
To estimate the temperature profile in the transformed part of the sample during a transition with moving in-

terface a simple approximation can be used for the dependence of Φf(r) in the form 

 t
f SE

E t
( )

r r
r

r r
−

Φ = Φ
−

 (5.65) 

based on the assumption the heating rate is a linear function of radius r with the maximum heating rate at r = rE: 
Φf(rE) = ΦSE ≡ (dTSE/dt) = ΦRE + dΔTDTA/dt and the minimum heating rate at r = rt: Φf(rt) = 0. The integral in 
(5.63) is then determined as 

 
t

3 2 3
SE t t

f
S E t

2 3
( ) d

6

r

r

r r r r
r r r

r rα
Φ − +

Φ =
−∫  (5.66) 

so that the gradient gf(r) is given as 
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2 3

t ft t t
f SE

S E t

2 3
( )

6 ( )
r g r rr r r

g r
r r rα

− +
= +Φ

−
 (5.67) 

The corresponding temperature profile Tf(r) should be then obtained by integration gf(r) from rt to r with the 
equilibrium transition temperature Tt considered as an integration constant: 

 
t t

t t
d ( )

( ) d ( )d
d

t t
f

f f
r r

T r
T r r T g r r T

r
= + = +∫ ∫  

 
f t ft t

2 3SE
t t t t

S E t

( ) ln( )

(4 9 ) (5 6ln( ))
6 ( )

T r r g r r

r r r r r r T
r rα

= +

Φ  + − + + + −
 (5.68) 

From the boundary condition Tf(rE) = TSE we have 

 
SE t ft E t

2 3SE
E E t t E t t

S E t

ln( )

(4 9 ) (5 6ln( ))
6 ( )

T r g r r

r r r r r r T
r rα

= +

Φ  + − + + + −
 (5.69) 

Similarly, to estimate the temperature profile in the untransformed part of the sample during a transition with 
the moving interface the approximation can be used for the dependence Φi(r) in the form 

 i C t( ) (1 )r r rΦ = Φ −  (5.70)  

based on the consideration that the heating rate is a linear function of the radius r with a maximum heating rate at 
r = 0: Φi(r = 0) = ΦC ≡ (dTC/dt) and a minimum heating rate at r = rt: Φi(rt) = 0. Equation (5.63) yields after inte-
gration with the substituted Φi(r) 

 C C
i i t

S t S0

1( ) ( ) d (3 2 )
6

r

S

r
g r r r r r r

r rrα α α
Φ Φ

= Φ = = ⋅ −∫  (5.71) 

and from the value of gradient at r = rt 

 it t C t C
i t it t t

t S S S
( ) (3 2 )

2 6 6
q r r

g r r g r r
rπ λ α α

Φ Φ
= = = = ⋅ − =



 (5.72) 

a relation for ΦC is obtained 

 S it
C

t

6 g
r

α
Φ =  (5.73) 

and (5.71) can be rewritten as 

 i it t t( ) ( ) (3 2 )g r g r r r r= ⋅ −  (5.74) 

Integrating Eq. (5.74) from r = 0 to r = rt  
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 [ ]
22 3

it
i C it C t2

t tt

3 2( ) 9 4
2 3 6

gr r rT r T g T r r
r rr
   

= + − = + −   
  

  (5.75) 

where TC is an integration constant obtainable from the boundary condition Ti(rt) = Tt as 

 C t it t
5
6

T T g r= − ⋅  (5.76) 

and Eq. (5.75) can be rewritten as 

 
2

it
i t t t

t
( ) (9 4 ) 5

6
g rT r T r r r

r

  
 = + − − 
   

 (5.77) 

From the expressions for Tf(r) and Ti(r) the values for gft (in 5.68) and git (in 5.77) should be estimated as 
functions 

 
2

SE t G SE t t
ft ft ft 2

E t E t

( )(1 )

E

T T T T r
g k k

r r r r r
ξ− − −

= =
− −

 (5.78) 

 
2

t
it i0 G i0 2

E

(1 )
r

g g g
r

ξ= − =  (5.79) 

where kft is a dimensionless constant and gi0 is a constant of the dimension K/cm. 
Using the value kft = 5.5 (estimated from relations between TSE and Tt obtained from continuous model) 

gi0 = 20, and other values applied at continuous model (rE = 1, Tt = 800 °C, Φ = 0.2 K/s, λS = 0.02 W cm–1 K–1, 
S S 3 1

,m m 4 J cm KPC V − −= , S 3
t m m 400 J cmH V −∆ = ) the local gradient profile g(r) and the local temperature profile 

T(r) were calculated for the global extent of transition ξG = 0.7 (corresponding radius of interface rt = 0.548) as 
shown in Fig. 5.14. 

 

 
Fig. 5.14 Radial temperature gradient profile g(r) (left) and local temperature profile T(r) (right) 
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From an exact viewpoint, however, the temperature field inside a cylindrical sample during transition obeying 
the discontinuous model consisting of two different parts: the temperature field Tf(r) inside the transformed (fi-
nal) phase (at r ∈ (rt, rE)) given by 

 
2

f f
f2

S

d ( ) d ( )1 1 ( )
dd

T r T r r
r rr α

+ = Φ  (5.80) 

or 

 f f f f
f f S

S

d ( ) ( ) d ( ) ( )1 ( ) ( )
d d

g r g r g r g rr r
r r r r

α
α

 + = Φ ↔ Φ = + 
 

 (5.81) 

and the temperature field Ti(r) inside the untransformed (initial) phase (at r ∈ (r, rt)) 

 
2

i i
i2

S

d ( ) d ( )1 1 ( )
dd

T r T r r
r rr α

+ = Φ   (5.82) 

or  

 i i i i
i i S

S

d ( ) ( ) d ( ) ( )1 ( ) ( )
d d

g r g r g r g rr r
r r r r

α
α

 + = Φ ↔ Φ = + 
 

 (5.83) 

Unfortunately, the exact solution of the above differential equations under the condition of a moving interface 
rt = rt(t) is still not within contemporary mathematical powers of the authors. It seems that an exact solution of 
discontinuous model is connected with the so-called Stefan problem indicated by Lamé and Clapeyron as early 
as in 1831 [57] and named after Slovenian scientist Jožef Stefan (1835–1893) [58]. 

5.5 Temperature profile and temperature modulation 

During the last decade of 20th century temperature modulated Differential Scanning Calorimetry (tm-DSC) 
method was developed and used [59, 60]. The question arises what happens with the temperature profile inside a 
material exposed to a periodically changing heating rate. Assuming no transition occurs during heating, the tem-
perature profile should oscillate between the stabilized profiles corresponding to heating and cooling rates. The 
simplified idea of such oscillations is presented in Fig. 5.15. 
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Fig. 5.15 Simplified idea of changes in temperature profile inside cylindrical sample due temperature modulation 

 
However, the simplified idea does not respect the Fourier differential equation as expressed by Eq. (5.14). Us-

ing the above mentioned software the correct evolution of the temperature profile is more complicated as shown 
in Fig. 5.16. 

 

 
Fig. 5.16 Calculated development of temperature profile T(r) during one period of temperature modulation (period τ = 100 s, heating 
rate Φ = 0.1 ± 0.6 K/s, αS = 0.05 cm2/s, rE = 1 cm) for times 220–320 second 

5.6 Revised DTA equation 

Modern science with its emphasis on the publishable results promotes specialization. Therefore only a little ac-
count is paid to the interrelationship between various physical phenomena. This is probably the reason why most 
publications devoted to kinetic interpretations of curves obtained from thermal analysis ignore the delay caused 
by the thermal inertia of the sample, despite the fact that the correction of this distortion is known and recom-
mended since 1967 [47].  

One cause of this recent ignorance, as it appears, is a loyal confidence of scientists towards sophistication of 
commercial thermoanalytical devices and their manuals which make believe that the physically relevant interpre-
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tation of curves of thermal analysis can be obtained by straightforward easy way. It seems that scientists believe 
that a mere replacement of thermocouples (in DTA) by thermocouple batteries (in heat flux DSC) or by sensitive 
electronic chips (in nanocalorimetry [61]) moreover renaming DTA to variously termed DSC is a sufficient solu-
tion answer. It gives an impression that the objections put forward against the use of as-measured (uncorrected-
original) TA curves as the curves expressing the authentic rate of chemical/phase process are insignificant. 

The analyses presented above confirm not only the inevitability of the earlier suggested heat inertia correction 
but lead also to the requirement of introducing additional correction term respecting the changes in temperature 
field inside the sample, which occur during the transition and/or reaction.  

The analysis presented in this chapter shows, however, a more deep complexity of any kinetic studied on sol-
id samples, where no instantaneous homogenization (stirring [32]) can be used to maintain the sample tempera-
ture constant during transition and/or reaction – the problem which could be called a “dilemma of solid state ki-
netics” [62]. 

Generally for any sample under study the sample temperature depends on  

a) the heat transfer from or to surroundings (through the sample surface) 
b) the heat consumption which is necessary to increase the sample temperature  
c) the heat evolution or consumption by the reaction or transition (in the sample volume) 

as it can be expressed for the sample (and its holder) in the form of infinite cylinder (with an external radius rH) 
by 

 ( ) ( )
H E

r
EHS S

0 0

d ( , ( ))d ( )2 ( ) d ( ) d
d d

r r
r T rT rq C T r r r H T r r r

t t
ξ

π
 
 = + ∆
  
∫ ∫  (5.84) 

where CS(T) and ΔH(T) are the heat capacity of the system sample + holder and transition enthalpy change, re-
spectively, dT(r)/dt and dξr(r))/dt are the rates of local temperature and local extent of transition, respectively. 
The heat flux from/to surroundings EHq  depends on the temperature of the external surface of the holder TEH as 
expressed in (5.1) EH W EH( )q K T T= −  so that 

 ( ) ( )
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π
−

= + ∆∫ ∫  (5.85) 

The first integral term represents a heat flux associated with the change of temperature field in the sample–holder 
system consisting of two integrals: 
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The integrals on the right side of (5.86) can be simplified (assuming temperature independent values of CH and 
CSM, and zero change of heat capacity during transition) to 
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H

2 2 2
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where ΦH stands for the average (over the whole volume) heating rate of the holder 
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where average (weighted) temperature of the holder THSφ is defined as 

 ( )
H

E

HS H2 2
H E

2 d
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r

T T r r r
r rφ ≡ − ∫  (5.89) 

and ΦS is the average heating rate of the sample 
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where the average (weighted) temperature of the sample (without holder) TSφ is defined as  

 ( )
E

S S2
E 0

2 d
r

T T r r r
rφ ≡ ∫  (5.91) 

Similarly the last integral on the right side of Eq. (5.85) can be simplified (assuming temperature independent 
value of ΔH) to 
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ξ ξ
∆ = ∆∫  (5.92) 

where ξG represent the average (overall) the extent of transition 
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Equation (5.85) is then found in the form: 

 ( )W EHS 2 2 2 2 G
H E HM HS E SM S E

d
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π
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= − Φ + Φ + ∆  (5.94) 

The dilemma of solid state kinetics stems from the fact that we are able to control the temperature TW (in 
DTA or heat-flux DSC measurement) or the temperature TEH (in compensating DSC device) but we can never 
control the temperature field T(r) because it depends also on the evolution or consumption of heat inside the 
sample. Therefore, the dependence of the reaction process rate dα/dt ≡ dξG/dt (expressed on the basis of (5.94) 
assumes the form 

 
( ) 2 2
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d ( 1)d
d d

K T T r r C C
t t Hr H

ξα
π

− − Φ + Φ
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 (5.95) 

where the controlled temperature is either TW (in DTA experiment) or TEHS. However, the temperature, which is 
primarily corresponding to the thermal state responsible for the transition rate is TSφ. In a solid sample this tem-
perature TSφ never subsists as an entirely independent quantity both under the linear heating rate or the so called 
isothermal conditions. This is substantial reason for solid-state-kinetics quandary. 

If equation similar to (5.84) is applied to the reference sample: 
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and the equation analogous to (5.94) is found in the form 

 ( )W EHR 2 2 2
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−
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When subtracting (5.97) from (5.94) the following difference is obtained 
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where (TEHS − TEHR) = ΔTDTA. If a stabilized temperature profile is reached in the couple of reference holder–
reference material, then ΦHR = ΦRM = dTEHR/dt = ΦDTA, so that 
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 (5.99) 

If the holder material (the same for sample as for reference) has a good (high) thermal conductivity then we can 
assume 

 ( )EHS EHREHS EHR DTA
HS DTA

dd d d
d d d d

T TT T T
t t t t

− ∆
Φ = = + = Φ +  (5.100) 

but for the rate ΦSM an additional term dθSM/dt should be considered, being the more significant the lower is the 
sample thermal conductivity, such that 

 SMDTA
SM DTA

dd
d d
T

t t
θ∆

Φ = Φ + +  (5.101) 

Substituting the last two equations into (5.99) the revised DTA equation is found in the form 
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 (5.102) 

where θSM is defined as the difference between TSφ (see Eq. 5.91) and TEHS 

 SM S EHST Tφθ ≡ −  (5.103) 

Modifying (5.102) we can obtain 
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and then defining 

 2 2 2 2 2
E RM SM H E H E SM E SM( ); ( ) ;C r C C C r r C r C C r CθΦ ∆∆ ≡ − ≡ − + ≡  (5.105) 

the DTA equation with four terms on the right side is established 

 2SM GDTA
DTA DTA E

d dd
d d d
TK T C C C r H

t t tθ
θ ξ

Φ ∆
∆

∆ = ∆ Φ − − − ∆  (5.106) 

The first term corresponds to the baseline part of DTA curve, the second one expresses the contribution of the 
heat inertia term, the third one specifies the contribution due to the changes of temperature profile inside the 
sample, and only the fourth term corresponds to the process occurring inside the sample. It is clear that the ratio 
between the second term and the last term is not diminished when the sample weight is lowered.  

It should be noted that the sample heat capacity CSM is changed during the transition. The simplest depend-
ence of CSM on the extent of transition ξG can be assumed as 

 ( )SM G SMi G SMC C Cξ ξ= + ∆  (5.107) 

where CSMi is the heat capacity of the initial phase and ΔCSM is the integral change of sample heat capacity (i.e. 
the difference between heat capacities of the final and the initial phase ΔCSM = CSMf – CSMi). Considering (5.105) 
it follows that the first three terms on the right side of (5.106) depend on the extent of transition ξG.  

The revised DTA equation (5.106) is valid analogously for the heat flux DSC curves (when the difference in 
thermoelectric signals ΔEDSC is calibrated and employed instead of ΔTDTA).  

Another situation arises in the case of compensation DSC (e.g. Perkin-Elmer DSC method), where the tem-
perature of sample holder is permanently kept equal to the temperature of reference holder. Then ΦHS = ΦDTA in 
(5.100) and the second term on the right side of (5.106) vanishes. However, the third term expressing the contri-
bution due to changes of the temperature profile inside sample stays important.  
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