Introduction to Magnetic Response Properties

Lesson 9: Intro. to Magnetic Response Properties

- **ベロト 〈母〉 〈**言〉 〈言〉 言 のへの

(Prepared by Radek Marek Research Group)

- widely used structure determination method
- uses very high magnetic fields to probe magnetically active nuclei
- typical nuclei: ¹H, ¹³C, ¹⁵N, ³¹P
- each type of nucleus gives specific signal in spectrum
- position and shape of the signal is given by electronic and nuclear structure surrounding the nucleus

Properties that can be obtained

- isotropic Chemical Shifts
- chemical Shielding Tensors
- J-coupling
- g and A-tensors (EPR, paramagnetic NMR)

In Silico NMR Properties

- calculated NMR atomic properties are very sensitive to:
 - chosen geometry
 - wavefunction (tighten convergence criteria, if possible)
 - solvent effects/crystal effects (especially exchangeable moieties)
 - dynamic effects

Energy Levels $(\alpha - \beta)$

- difference between states is $\Delta E = \gamma \hbar B_0 = -\gamma \omega$
- where:
 - γ is the magnetogyric ratio of a nucleus
 - h is Planck's constant
 - B₀ is the external magnetic field
 - ω is the Larmor precession frequency
- small energies for excitations perturbation to the wavefunction

•
$$\Delta E = \gamma \hbar (1 - \sigma) B_0 = -\gamma \omega$$

• magnetic field felt by the nucleus is $(1 - \sigma) * B_0$ as a result of chemical shielding σ

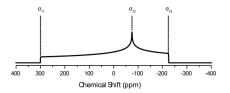
• difference in frequency of bare nucleus and nucleus under is:

•
$$\sigma(ppm) = 10^6 * (\nu_{nuc} - \nu_{com}) / \nu_{nuc}$$

chemical shift:

•
$$\delta(ppm) = 10^6 * (\sigma_{ref} - \sigma_{sample})$$

(Prepared by Radek Marek Research Group)

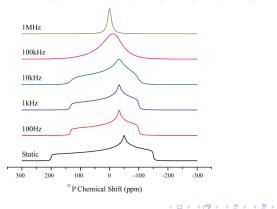

Lesson 09 - Introduction to Magnetic Response Properties

э.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Chemical Shift Anisotropy

- IUPAC convention:
 - $\sigma_{11} \geq \sigma_{22} \geq \sigma_{33}$
 - σ₁₁: direction of least shielding, σ₃₃: direction of highest shielding



the average of these is the "isotropic" value

(Prepared by Radek Marek Research Group)

Isotropic Tumbling

- due to fast tumbling in solution, the shielding gets isotropically distributed
- in solid state the anisotropy is reduced by magic angle spinning (MAS)

(Prepared by Radek Marek Research Group)

Lesson 09 - Introduction to Magnetic Response Properties

Ξ.

Chemical shift (δ)

 difference between the shielding of nucleus under investigation and nucleus in reference compound:

•
$$\delta(ppm) = 10^6 * (\sigma_{COM} - \sigma_{STD})/(1 - \sigma_{STD})$$

- In Silico Methods
 - improved results with climbing Jacob's ladder (DFT and ab initio)
 - always try to use as high basis set as possible
 - STO are superior to GTO
 - make sure you wavefunction is well converged
 - increase the SCF convergence criteria
 - calculate the chemical shifts against well-behaving reference

Practical task (NMR)

- Calculate the NMR properties of acetic acid
- Consider
 - Equilibrium geometry
 - Dimer
 - Microsolvated acetic acid with 2 water molecules
 - Calculate the spin-spin J-couplings as well

Input

- In your input files include:
 - b3lyp 6-311++g(d,p) method
 - Very tight linear equations for SCF
 - D3 dispersion correction
 - Ultrafine integration grid
 - PCM water solvation model
 - Calculation of only J-couplings for nonoxygen atoms of acetic acid (see documentation of NMR in Gaussian, do NOT calculate for dimer)

Reference compound

• Good reference from computational point of view:

- Small and symmetric
- Rigid molecule (elimination of dynamic effects)
- Only electrostatic interactions wit surroundings (elimination of charge transfer effects)
- Benzene in benzene
- Use the very same setup as for acetic acid (except PCM),
- use "tight" convergence for optimization

•
$$\delta^{13}C = 127.83, \delta_1H = 7.15$$

•
$$\delta_{COM}(ppm) = \sigma_{STD} - \sigma_{COM} + \delta_{STD}$$

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のへの

(Prepared by Radek Marek Research Group)

Results

- Compare the experimental values with predicted ones:
- ¹*H* : 2.08 and 11.7 ppm
- ¹³C : 20.0 and 180.0 ppm
- Why Some geometries give better results?

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ のへで

(Prepared by Radek Marek Research Group)