E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra Vlad Popovici, Ph.D. Fac. of Science - RECETOX Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 2 / 27 Outline 1 Introduction 2 Fundamentals of Boolean algebra 3 Other operators 4 From truth table to functions and circuits Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 3 / 27 Introduction: ”0/1” Babbage’s punched cards Basic relay device Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 4 / 27 George Boole (1815-1864) 1844: ”On a general method in analysis”; gold prize in mathematics from Royal Society logical system: ”An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities” −→ ”algebra of logic” Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 5 / 27 Victor Shestakov (1907-1987) Moscow State University (1934) theory of electric switches based on Boolean logic algebraic logic model for 2-, 3-, 4-poles switches Claude Shannon (1916-2001) ”father of information theory” MIT thesis on theory of electrical circuits based on Boolean algebra Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 6 / 27 Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 7 / 27 Fundamentals binary logic: ”tertium non datur”: law of excluded middle symbolism: 0: FALSE, 1: TRUE variables: stand for one of the two possible values, are usually represented by letters (or strings) operators: nary functions of variables, usually unary or binary Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 8 / 27 variables: X, Y negation: NOT, ¬X conjunction: AND, X ∧ Y disjunction: OR, X ∨ Y X Y NOT X X X X X AND Y Y X X OR Y Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 9 / 27 Equivalence with sets and number operations negation: ¬X ≡ X ≡ C(X) 0 0 1 1 X C(X) Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 10 / 27 Equivalence with sets and number operations conjunction: X ∧ Y ≡ X · Y ≡ X ∩ Y X YX AND Y 0 0 0 0 0 0 0 1 1 1 1 1 Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 11 / 27 Equivalence with sets and number operations disjunction: X ∨ Y ≡ X + Y ≡ X ∪ Y X YX OR Y 0 0 0 0 0 1 1 1 1 1 1 1 Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 12 / 27 Example: X Y X OR Y 5v Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 13 / 27 commutative law: X ∧ Y = Y ∧ X or X · Y = Y · X X ∨ Y = Y ∨ X or X + Y = Y + X in the following we will use the usual algebraic notation, and skip · when not necessary associative law: (XY )Z = X(YZ) (X + Y ) + Z = X + (Y + Z) distributive law X(Y + Z) = XY + XZ Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 14 / 27 Example: X(Y + Z) = XY + XZ X Y Y Z Y+Z X(Y+Z) Z X XY XZ XY + XZ Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 15 / 27 Truth tables for functions (and circuits) Each logic function is fully described by enumerating all possible inputs and corresponding outputs (2n values for n distinct inputs/variables). NOT X X 0 1 1 0 AND X Y X · Y 0 0 0 0 1 0 1 0 0 1 1 1 OR X Y X + Y 0 0 0 0 1 1 1 0 1 1 1 1 Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 16 / 27 Fundamental laws and theorems X = X OR operations: X + 0 = X X + 1 = 1 X + X = X (idempotence) X + X = 1 AND operations: X · 0 = 0 X · 1 = X X · X = X (idempotence) X · X = 0 Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 17 / 27 Fundamental laws and theorems dual of distributive law: X + YZ = (X + Y )(X + Z) Proof: (X + Y )(X + Z) = XX + XZ + YX + YZ = X + XZ + YX + YZ ∵ XX = X = X(1 + Z) + YX + YZ = X + YX + YZ ∵ 1 + Z = 1 = X(1 + Y ) + YZ = X + YZ ∵ 1 + Y = 1 Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 18 / 27 Fundamental laws and theorems dual of distributive law: X + YZ = (X + Y )(X + Z) Proof (by brute force approach - truth table): X Y Z X + Y X + Z YZ (X + Y )(X + Z) X + YZ 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 19 / 27 Fundamental laws and theorems absorption law: X + XY = X X(X + Y ) = X identity theorem: X + XY = X + Y X(X + Y ) = XY De Morgan’s theorem: X + Y = XY XY = X + Y Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 20 / 27 Other operators XOR ”exclusive OR” X Y X ⊕ Y 0 0 0 0 1 1 1 0 1 1 1 0 NAND ”negated-AND” X Y XY 0 0 1 0 1 1 1 0 1 1 1 0 NOR ”negated-OR” X Y X + Y 0 0 1 0 1 0 1 0 0 1 1 0 Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 21 / 27 Truth table −→ function −→ circuit Consider the following truth table: X Y Z F(X, Y , Z) 0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1 1 0 What is the corresponding logic function? Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 22 / 27 Method Write the function as a sum of products (i.e. disjunction of conjunctions): for each ”1” in the function column, take the sum (OR) of the corresponding fundamental product (ANDs). Then simplify the expression. Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 23 / 27 X Y Z F(X, Y , Z) products 0 0 0 1 X · Y · Z 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 X · Y · Z 1 0 1 0 1 1 0 1 X · Y · Z 1 1 1 0 Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 24 / 27 X Y Z F(X, Y , Z) products 0 0 0 1 X · Y · Z 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 1 X · Y · Z 1 0 1 0 1 1 0 1 X · Y · Z 1 1 1 0 F(X, Y , Z) = X · Y · Z + X · Y · Z + X · Y · Z Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 24 / 27 Implementation: F(X, Y , Z) = X · Y · Z + X · Y · Z + X · Y · Z Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 25 / 27 Simplification: F(X, Y , Z) = X · Y · Z + X · Y · Z + X · Y · Z = (X + X)Y · Z + X · Y · Z = Y · Z + X · Y · Z = Z(Y + XY ) = Z(X + Y ) Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 26 / 27 Questions? Vlad Popovici, Ph.D. (Fac. of Science - RECETOX)E2011: Theoretical fundamentals of computer science Topic 2: Boolean algebra 27 / 27