Metagenomics processing

E5444 Analysis of Sequencing Data

Vojtěch Bartoň, 2023

Metagenomics

- **Microbial Community Genetics:** Metagenomics studies the genetics of entire microbial communities in environmental samples.
- **Genomic Snapshot:** It doesn't require isolating or culturing individual microorganisms, providing a holistic view of diverse microbes.
- Health Insights: It helps us study the human microbiome and its impact on health without traditional culturing methods
- Applications in Ecology and Biotech: Metagenomics informs ecosystem understanding and aids in biotech discoveries like enzymes and antibiotics

Metagenomics: WMGS x 16S

WMGS

16S

Captures the entire genetic content of all microorganisms.

High-resolution data for functional analysis and taxonomic identification.

Suitable for complex ecosystems and novel gene discovery.

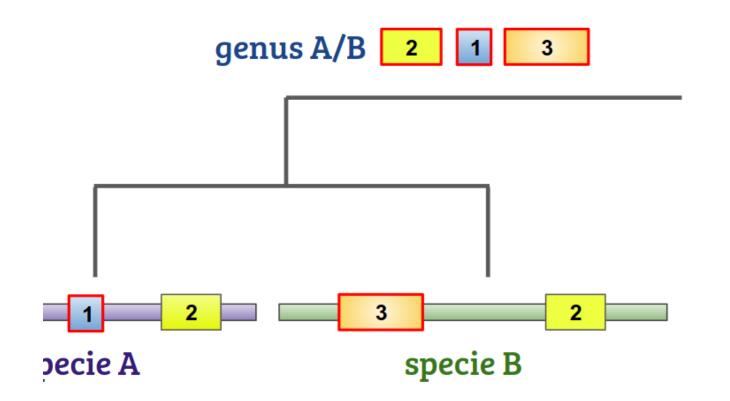
Used in environmental and clinical metagenomics.

Targets a specific 16S gene marker in bacteria and archaea.

Lower resolution, primarily for taxonomic identification.

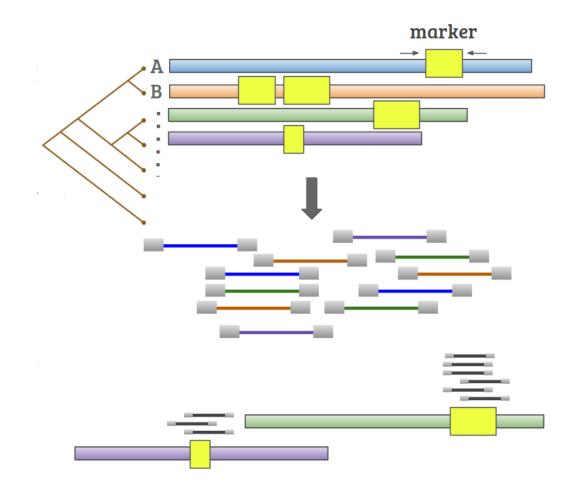
Commonly used for microbial community profiling and diversity studies.

Cost-effective method for taxonomic analysis.


MetaPhlAn

- Metagenomic Phylogenetic Analysis
- Taxonomic Profiling: MetaPhlAn identifies and quantifies microbes in samples.
- Marker Gene Approach: It uses unique genetic markers for speedy and accurate identification.
- Efficiency: Known for fast analysis of large datasets.
- **Applications:** Widely used in microbiome research and clinical metagenomics.
- https://github.com/biobakery/MetaPhlAn

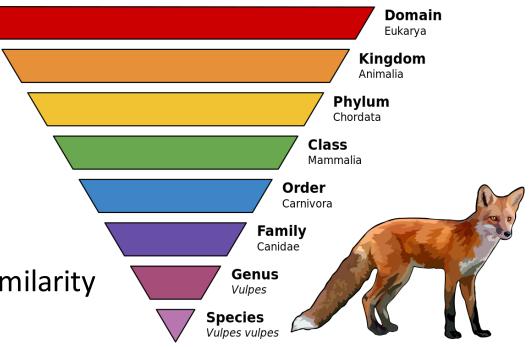
Metaphlan: input data


- Shotgun Whole Metagenome Sequencing
- Sequences (fasta, fastq)
- Database of taxonomically known sequences
 - Unique regions

Metaphlan: marker genes

- Clades
 - Groups of genomes (organisms) believed to have evolved from a common ancestor
- Clade-specific marker-genes
 - Strongly conserved within the clade's genomes
 - Not similar to any sequence in other clades (of the same level)
 - Unique markers change as the clade level grows
 - They also accumulate in a way (direct vs indirect)...

Metaphlan: Overview

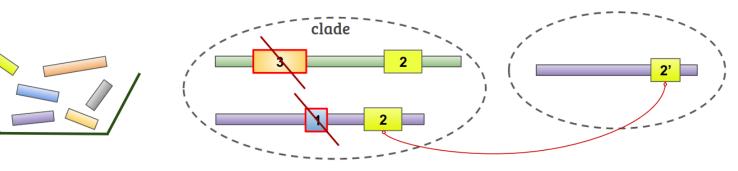

- Reference genomes and their taxonomy
- Find clade-specific marker genes

• Sequence your sample

- Map to marker genes
- Count taxonomic units

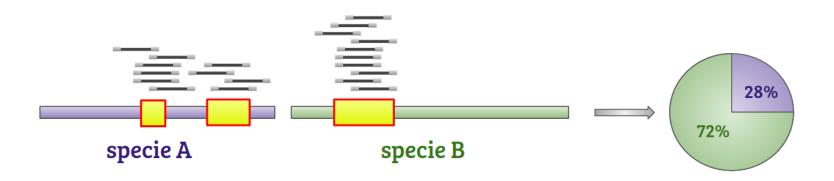
Metaphlan: Reference database

- ChocoPhlAn
- Acquire reference genomes
 - De novo assembly
 - Cultured species
 - Uniprot core data
- Acquire taxonomy
 - Hierarchical clustering tree based on similarity
 - Ncbi taxonomy

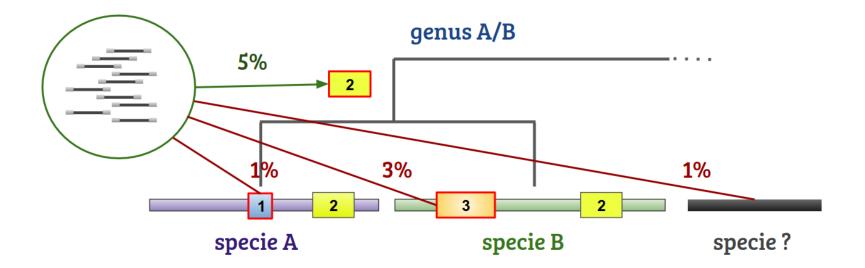


Red fox (Vulpes vulpes)

Metaphlan: Reference database


- The general process:
 - Each genome → bag-of-genes representation
 - Only conserved genes in the clade are saved
 - Inter-clade uniqueness index elimination
 - Single-copy genes were preferred of multi-copy genes

- Properties of the markers
 - Gene level
 - 5.1M filtered genes
 - 27K species-level genome bins
 - Not necessarily continuous (bagof-genes)
 - ~4% of the total genome length
 - ~260 markers per specie


Metaphlan: Taxonomic profiling

- Map reads against reference database of marker genes
- Calculate relative abundance
 - Sum the total reads mapped to clade markers
 - Divide by marker's total length
 - Abundances in every clade-level sum up to 100%

Metaphlan: Taxonomic profiling

- Unclassified case
 - Move up in the taxonomy tree

Metaphlan: outputs and visualisations

- bugs_list.tsv
- Utility scripts

#mpa_vJan21_CHOCOPhIAnSCB_202103			
#/mnt/storage-brno3-certit/share/310000-SCI/999990-rcxag/Projects/2_Infrastructure/1_Bjoinformatics/Tools/conda_ent/biobakert/bin/metaphlan/mnt/storage-brno3-c	erit/share/310000-SCI/999990- <u>rcxag</u> /Projects/2_In	frastructure/1_Bioinfor	ma
#2616413 reads processed			
#SampleLD	Metaphlan_Analysis		
#clade_name		relative_abundance a	add read
k_Bacteria	2	COLOCATO	_
k_Eukaryota	2759		_ '
	2 201174	90.92536	_
	2 1224	8.07582	_
	2759 5204	0.99881	_
	2 201174 1760	90.92536	_
	2 1224 1236	7.27117	
	2759 5204 1538075	0.99881	
k_Bacterialp_Proteobacterialc_Betaproteobacteria	2 1224 28216	0.80465	_ _
k_Bacterialp_Actinobacterialc_Actinobacterialo_Propionibacteriales	2 201174 1760 85009	90.42538	
k_Bacterialp_Proteobacterialc_Gammaproteobacterialo_Alteromonadales	2 1224 1236 135622	7.27117	
k_Eukaryotalp_Basidionycotalc_Malassezionyceteslo_Malasseziales	2759 5204 1538075 162474	0.99881	
k_Bacterialp_Proteobacterialc_Betaproteobacterialo_Burkholderiales	2 1224 28216 80840	0.80465	
k_Bacterialp_Actinobacterialc_Actinobacterialo_Corynebacteriales	2 201174 1760 85007	0.49999	
k_Bacterialp_Actinobacterialc_Actinobacterialo_Propionibacteriales/f_Propionibacteriaceae	2 201174 1760 85009 31957	90.42538	
k_Bacterialp_Proteobacterialc_Gammaproteobacterialo_Alteromonadales/f_Alteromonadaceae	2 1224 1236 135622 72275	7.27117	
k Eukaryotalp Basidiomycotalc Malasseziomyceteslo Malassezialeslf Malasseziaceae	2759 5204 1538075 162474 742845	0.99881	
k_Bacterialp_Proteobacterialc_Betaproteobacterialo_BurkholderialesIf_Comamonadaceae	2 1224 28216 80840 80864	0.80465	
k_Bacterialp_Actinobacterialc_Actinobacterialo_Corynebacteriales/f_Lawsonellaceae	2 201174 1760 85007 2805586	0.49999	
k Bacterialp Actinobacterialc Actinobacterialo Propionibacteriales f Propionibacteriaceaelg Cutibacterium	2 201174 1760 85009 31957 1912216	90.42538	
k Bacterialp Proteobacterialc Gammaproteobacterialo Alteromonadales/f Alteromonadaceaelg Alishewanella	2 1224 1236 135622 72275 111142	7.27117	
k Eukaryotalp Basidiomycotalc Malasseziomyceteslo Malassezialeslf Malasseziaceaelg Malassezia	2759 5204 1538075 162474 742845 55193	0.99881	
k Bacterialp Proteobacterialc Betaproteobacterialo Burkholderiales/f Comamonadaceae/g Delftia	2 1224 28216 80840 80864 80865	0.80465	
k Bacterialp Actinobacterialc Actinobacterialo Corynebacteriales/f Lawsonellaceaelg GGB2722	2 201174 1760 85007 2805586	0.49999	
k Bacterialp Actinobacterialc Actinobacterialo Propionibacteriales/f Propionibacteriaceaelg Cutibacterium/s Cutibacterium acnes	2 201174 1760 85009 31957 1912216 1747	89.48138	
k Bacterialp Proteobacterialc Gammaproteobacterialo Alteromonadales/f Alteromonadaceaelg Alishewanellals Alishewanella agri	2 1224 1236 135622 72275 111142 553384	7.27117	
k Eukaryotalp Basidionycotalc Malassezionycetesio Malassezialesif Malasseziaceaelg Malassezials Malassezia restricta	2759 5204 1538075 162474 742845 55193 76775	0.99881	
k Bacterialp Actinobacterialc Actinobacterialo Propionibacteriales/f Propionibacteriaceaelg Cutibacterium/s Cutibacterium granulosum	2 201174 1760 85009 31957 1912216 33011	0.944	
k Bacterialp Proteobacterialo Betaproteobacterialo Burkholderiales/f Comamonadaceaelg Delftials Delftia acidovorans	2 1224 28216 80840 80864 80865 80866	0.80465	
	2 201174 1760 85007 2805586	0.49999	
	2 201174 1760 85009 31957 1912216 1747	89.48138	
	2 1224 1236 135622 72275 111142 553384	7.27117 k	Bacteria
	2759 5204 1538075 162474 742845 55193 76775	0.99881	
	2 201174 1760 85009 31957 1912216 33011	0.944	
	2 1224 28216 80840 80864 80865 80866	0.80465 k	Bacteria
	2 201174 1760 85007 2805586	0.49999	

10¹ 10^{-1} 10^{0} Proteobacterialc Gammaproteobacterialo Alteromonadales Proteobacterialc Betaproteobacterialo Burkholderiales/f

Neisseria_sicca Neisseria mucosa Granulicatella_elegans Haemophilus influenzae Streptococcus mitis Rothia dentocariosa Gemella haemolysans Streptococcus_sanguinis Streptococcus oralis Veillonella parvula Streptococcus australis Haemophilus_parainfluenzae Veillonella_unclassified Prevotella melaninogenica Rothia mucilaginosa Veillonella_atypica Veillonella dispar Campylobacter concisus Actinomyces odontolyticus Oribacterium sinus Streptococcus infantis Streptococcus salivarius Streptococcus parasanguinis Neisseria unclassified Neisseria flavescens

Metaphlan: application

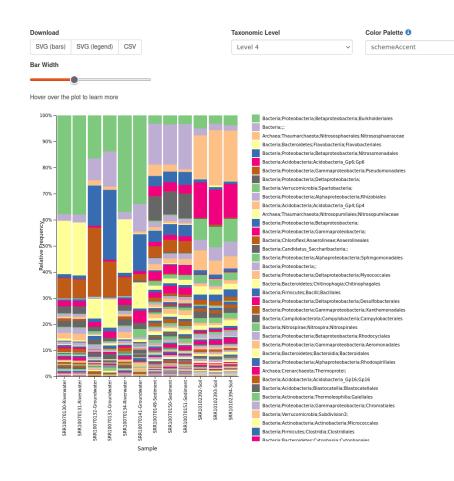
- Shotgun sequencing
- Microbiome Profiling
- Metagenomics
- Metatranscriptomics
- As input for HUMAnN
 - profiling the abundance of microbial metabolic pathways and other molecular functions

Metaphlan: pros & cons

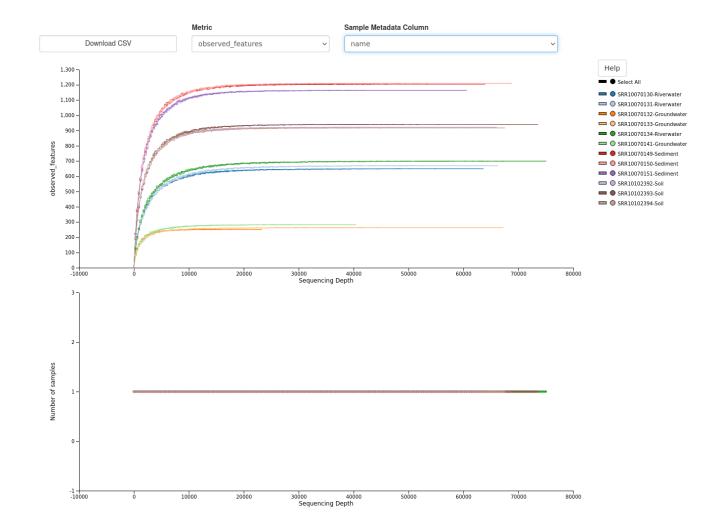
Pros

- Rapid profiling
- Accuracy
- Versatile
- Quantitative output

Cons


- Limited functional information
- Reference-dependent
- Computational resources
- Interpreting unknowns

QIIME2


h			
	А	В	С
1	sampleID	forwardReads	reverseReads
2	SRR10070130	s3://ngi-igenomes/test-data/ampliseg/SRR10070130_1.fastq.gz	s3://ngi-igenomes/test-data/ampliseg/SRR10070130_2.fastq.gz
3	SRR10070131	s3://ngi-igenomes/test-data/ampliseg/SRR10070131_1.fastq.gz	s3://ngi-igenomes/test-data/ampliseg/SRR10070131_2.fastq.gz
4	SRR10070132	s3://ngi-igenomes/test-data/ampliseg/SRR10070132_1.fastq.gz	s3://ngi-igenomes/test-data/ampliseg/SRR10070132_2.fastq.gz
5	SRR10070133	s3://ngi-igenomes/test-data/ampliseg/SRR10070133_1.fastq.gz	s3://ngi-igenomes/test-data/ampliseg/SRR10070133_2.fastq.gz
6	SRR10070134	s3://ngi-igenomes/test-data/ampliseg/SRR10070134_1.fastq.gz	s3://ngi-igenomes/test-data/ampliseg/SRR10070134_2.fastq.gz
7	SRR10070141	s3://ngi-igenomes/test-data/ampliseg/SRR10070141_1.fastq.gz	s3://ngi-igenomes/test-data/ampliseg/SRR10070141_2.fastq.gz
8	SRR10070149	s3://ngi-igenomes/test-data/ampliseg/SRR10070149_1.fastq.gz	s3://ngi-igenomes/test-data/ampliseg/SRR10070149_2.fastq.gz
9	SRR10070150	s3://ngi-igenomes/test-data/ampliseg/SRR10070150_1.fastq.gz	s3://ngi-igenomes/test-data/ampliseg/SRR10070150_2.fastq.gz
10	SRR10070151	s3://ngi-igenomes/test-data/ampliseg/SRR10070151_1.fastq.gz	s3://ngi-igenomes/test-data/ampliseg/SRR10070151_2.fastq.gz
11	SRR10102392	s3://ngi-igenomes/test-data/ampliseg/SRR10102392_1.fastq.gz	s3://ngi-igenomes/test-data/ampliseg/SRR10102392_2.fastq.gz
12	SRR10102393	s3://ngi-igenomes/test-data/ampliseg/SRR10102393_1.fastq.gz	s3://ngi-igenomes/test-data/ampliseg/SRR10102393_2.fastq.gz
13	SRR10102394	s3://ngi-igenomes/test-data/ampliseg/SRR10102394_1.fastq.gz	s3://ngi-igenomes/test-data/ampliseg/SRR10102394_2.fastq.gz

	A	В	С	D	E	
1	ID	name	habitat	Riv_vs_Gro	Sed_vs_Soil	
2	SRR10070130	SRR10070130-Riverwater	Riverwater	Riverwater		
3	SRR10070131	SRR10070131-Riverwater	Riverwater	Riverwater		
4	SRR10070132	SRR10070132-Groundwater	Groundwater	Groundwater		
5	SRR10070133	SRR10070133-Groundwater	Groundwater	Groundwater		
6	SRR10070134	SRR10070134-Riverwater	Riverwater	Riverwater		
7	SRR10070141	SRR10070141-Groundwater	Groundwater	Groundwater		
8	SRR10070149	SRR10070149-Sediment	Sediment		Sediment	
9	SRR10070150	SRR10070150-Sediment	Sediment		Sediment	
10	SRR10070151	SRR10070151-Sediment	Sediment		Sediment	
11	SRR10102392	SRR10102392-Soil	Soil		Soil	
12	SRR10102393	SRR10102393-Soil	Soil		Soil	
13	SRR10102394	SRR10102394-Soil	Soil		Soil	

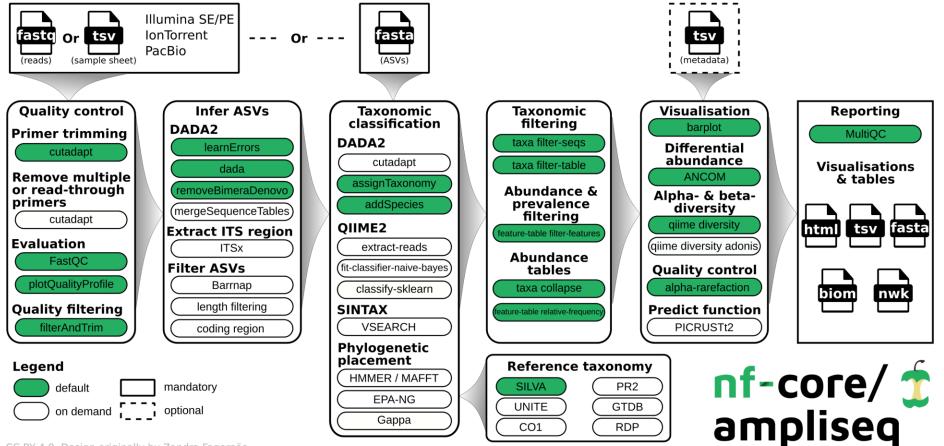
QIIME2

 \sim

QIIME2: Output artifacts and visualisations

- *.qza zip folder, containing data and metadata
- *.qzv zip folder, containind data, metadata and visualisations

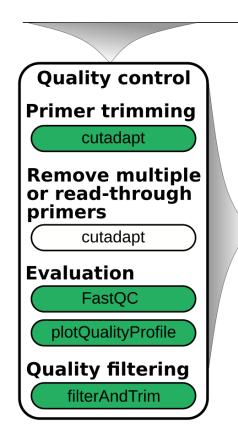
QIIME2: pros & cons

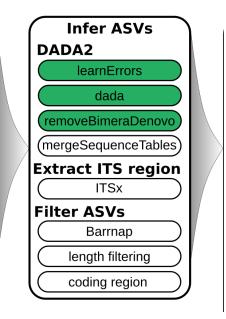

Pros

- Comprehensive pipeline
- Plugins
- GUI
- Modularity

Cons

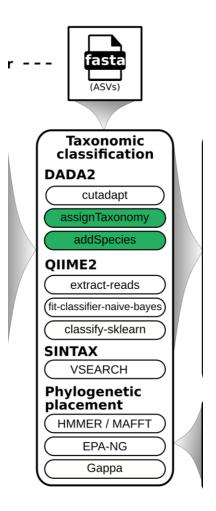
- Own data types
- Learning curve
- Reference dependent


nf-core/Ampliseq pipeline

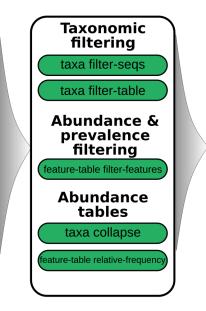

CC-BY 4.0. Design originally by Zandra Fagernäs

Ampliseq: quality control

- Data preprocessing
- Check reads quality
- Perform filt&trim

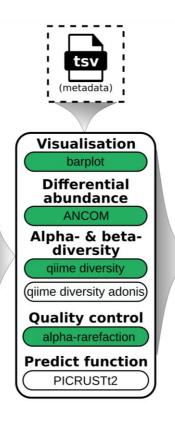


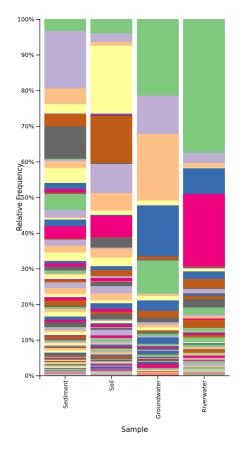
Ampliseq: ASVs calculation


- DADA2
- Error estimation
- Chimera removal
- Contamination removal
- Filtering

Ampliseq: Taxonomic classification

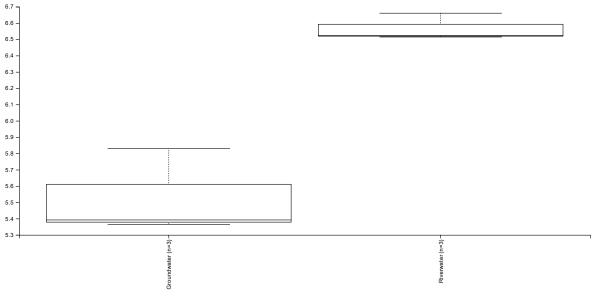
- Database dependent
- Infer species
- Confidence intervals
- Multiple assignment


Ampliseq: Taxonomic filtering

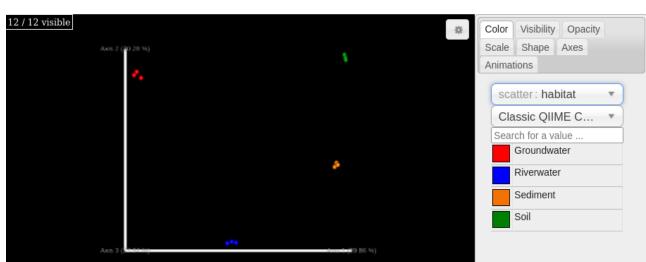

- Filter specific taxa
- Abundance filtering

Ampliseq: Post processing

- Visualisation
- Diversity computation
- Functional analysis



Ampliseq: Visualisation.



Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales Bacteria; ;;

- Bacteria; Proteobacteria; Betaproteobacteria; Nitrosomonadales Archaea;Thaumarchaeota;Nitrososphaerales;Nitrososphaeraceae Bacteria; Proteobacteria; Gamma proteobacteria; Pseudomonadales Bacteria;Bacteroidetes;Flavobacteriia;Flavobacteriales Bacteria;Acidobacteria;Acidobacteria_Gp6;Gp6 Bacteria; Proteobacteria; Deltaproteobacteria; Archaea; Thaumarchaeota; Nitrosopumilales; Nitrosopumilaceae Bacteria;Verrucomicrobia;Spartobacteria; Bacteria; Proteobacteria; Alphaproteobacteria; Rhizobiales Bacteria; Proteobacteria; Betaproteobacteria; Bacteria; Proteobacteria; Gammaproteobacteria; Bacteria;Acidobacteria;Acidobacteria Gp4;Gp4 Bacteria;Candidatus Saccharibacteria;; Bacteria; Proteobacteria; Alphaproteobacteria; Sphingomonadales Bacteria:Chloroflexi:Anaerolineae:Anaerolineales Bacteria; Proteobacteria;; Bacteria;Bacteroidetes;Chitinophagia;Chitinophagales Bacteria;Firmicutes;Bacilli;Bacillales Bacteria; Proteobacteria; Deltaproteobacteria; Myxococcales Bacteria; Proteobacteria; Deltaproteobacteria; Desulfobacterales Bacteria: Proteobacteria: Gammaproteobacteria: Xanthomonadales Bacteria;Campilobacterota;Campylobacteria;Campylobacterales Bacteria: Proteobacteria: Betaproteobacteria: Rhodocyclales Bacteria;Nitrospirae;Nitrospira;Nitrospirales Bacteria;Bacteroidetes;Bacteroidia;Bacteroidales Archaea;Crenarchaeota;Thermoprotei;
- Bacteria; Firmicutes; Clostridia; Bacteria; Proteobacteria; Alphaproteobacteria; Rhodospirillales Bacteria; Proteobacteria; Gammaproteobacteria; Aeromonadales
- Bacteria; Acidobacteria; Acidobacteria_Gp16; Gp16; Gp16; Bacteria; Proteobacteria; Acidobacteria; Chromatiales Bacteria; Acidobacteria; Bastocatelia; Blastocatelia; Bastocateliaes Bacteria; Acidobacteria; Thermoleophilia; Gaiellales Bacteria; Verrucomicrobia; Subdivision3;

Riv_vs_Gro

Ampliseq: functional profiling

- Picrust2
- Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
- KEGG and COG database
- Based on phylogeny
- Genes present in microbial genomes are similar amongst relatives
- When sufficient genome sequences are available, it is possible to predict which gene families are present in a given microbial OTU from phylogeny alone.

Ampliseq: Report

CUTADAPT_BASIC	cutadapt	3.4
DADA2_DENDISING	R	4.1.1
	dada2	1.22.0
DADA2_FILTNTRIM	R	4.1.1
	dada2	1.22.0
DADA2_QUALITY1	R	4.1.1
	ShortRead	1.52.0
	dada2	1.22.0
DADA2_TAXONORY	R	4.1.1
	dada2	1.22.0
FASTQC	fastqc	0.11.9
FILTER_STATS	pandas	1.1.5
	python	3.9.1
PICRUST	picrust2	2.5.0
	python	3.8.13
QIIME2_INSEQ	qiime2	2022.11.1
RENAME_RAW_DATA_FILES	sed	4.7
TRUNCLEN	pandas	1.1.5
	python	3.9.1
Morkflow	Nextflow	23.04.1
	nf-core/ampliseq	2.5.0

nf-core/ampliseg Workflow Summary

- this information is collected when the pipeline is started

Core Nextflow options

revision master

- runName stupefied_easley containerEngine singularity
- launchoff // munication // superior // sup
- projectDir /mnt/storage-brno12-cerit/share/310000-SCI/99990-rcxag/Projects/2_Infrastructure/1_Bioinformatics/Tools/Pipelines/nextflow/assets/nf-core/amplisec
- userName bartonv profile test_full

configFiles /mnt/storage-brno12-cerit/share/310000-SCI/999990-rcxag/Projects/2_Infrastructure/1_Bioinformatics/Tools/Pipelines/nextflow/assets/nf-core/ampliseq/nextflow.config, /mnt/storage-brno12-cerit/share/310000-SCI/999990-rcxag/Projects/2_Infrastructure /1_Bioinformatics/Tools/nf-core_pipelines/test/ampliseq_full/rcx_bio.config

Main arguments

- input https://raw.githubusercontent.com/nf-core/test-datasets/ampliseg/samplesheets/Samplesheet full.tsv
- FW_prime
 GTGYTVARCMCCCCCGTATA

 RV_prime
 GGCTTARVGGGTWTCTAT

 mestadata
 http://rww.jithuburecontent.com/nf-core/test-datasets/aplieq/sampleheets/Metadata_full.tsv

outdir

Read trimming and guality filtering

trunc_qmin 35

Taxonomic database

dada_ref_taxonomy rdp

qiime_ref_taxonomy greengenes8

ASV filtering min_frequency

min samples

Downstream analysis metadata category b ... habita

qiime_adonis_formula habitat picrust true

Max job request options

max_cpus 64 max_memory 500 GB max_time 24d 20h 31m 24s

Institutional config options

config_profile_name Full test profile config_profile_descri... RCX_BIO cluster profile provided by nf-core/configs. config_profile_contact Vojtech Barton (@VojtechBarton) config_profile_url https://recetox.muni.cz

Nextflow workflow report

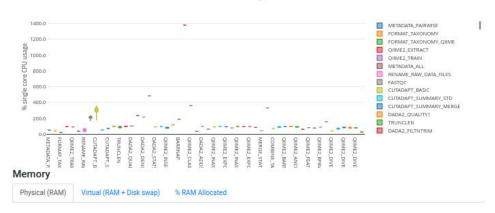
[stupefied_easley] (resumed run)

Workflow execution completed successfully!

Run times

24-May-2023 10:56:16 - 24-May-2023 12:59:02 (duration: 2h 2m 46s)

31 succeeded	109 cached
Nextflow command	
nextflow run nf-core/amplis	seq -resume -profile test_full -c rcx_bio.configoutdir .
CPU-Hours	14.8 (72.1% cached)
Launch directory	/mnt/storage-brno12-cerit/share/310808-5CI/000008-rcxag/Projects/2_Infrastructure/1_Bioinformatics/Tools /nf-core_pipelines/test/ampliseq_full
Work directory	/mnt/storage-brno12-cerit/share/310808-5CI/000000-rcxag/Projects/2_Infrastructure/1_Bioinformatics/Tools /nf-core_pipelines/test/ampliseq_full/work
Project directory	/mmt/storage-brno12-cerit/share/310000-SCI/000000-rcxag/Projects/2_Infrastructure/1_Bioinformatics/Tools /Pipelines/nextflow/assets/nf-core/ampliseq
Script name	main_nf
Script ID	be30b18b01608464e16a85b343c2dc73
Workflow session	828e3adc-21d9-44f5-97ed-f726ccfd4a89
Workflow repository	https://github.com/nf-core/ampliseq ,revision master (commit hash 78b7514ceeba88efb86b8e973e5321878cb9b8ba)
Workflow profile	test_full
Nextflow version	version 23.04.1, build 5866 (15-04-2023 06:51 UTC)


Resource Usage

These plots give an overview of the distribution of resource usage for each process.

CPU

Raw Usage % Allocated

Ampliseq: pros & cons

Pros

- Standardized
- Easy to run
- Comprehensive analysis
- Community-driven

Cons

- Learning curve
- Resource intensive
- Needs setup
- Software versions dependent