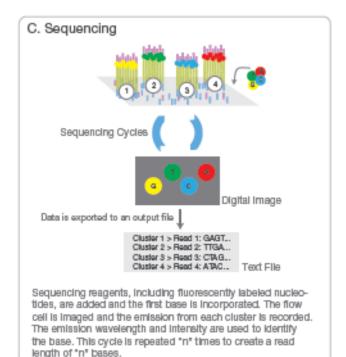
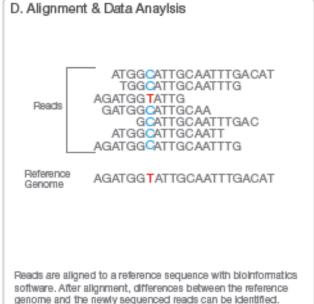

## Practical aspects of Illumina sequencing - summary


## The steps of Illumina sequencing


- 1. Fragment genomic DNA, e.g. with a sonicator.
- 2. Ligate adapters to both ends of the fragments.
- 3. PCR amplify the fragments with adapters
- Spread DNA molecules across flowcells. Goal is to get exactly one DNA molecule per flowcell lawn of primers. This depends purely on probability, based on the concentration of DNA.
- Use bridge PCR to amplify the single molecule on each lawn so that you can get a strong enough signal to detect. Usually this requires several hundred or low thousands of molecules.
- 6. Sequence by synthesis of complementary strand: <u>reversible terminator chemistry</u>.





Library is loaded into a flow cell and the fragments hybridize to the flow cell surface. Each bound fragment is amplified into a clonal cluster through bridge amplification.





## Sources of errors: adapters

• In step 2, adapters are ligated to the end of the fragments



Sequencing random fragments of DNA is possible via the addition of short nucleotide sequences which allow any DNA fragment to:

- Bind to a flow cell for next generation sequencing
- Allow for PCR enrichment of adapter ligated DNA fragments only
- Allow for indexing or 'barcoding' of samples so multiple DNA libraries can be mixed together into 1 sequencing lane (known as multiplexing)

## Fragment add-ons

**Adapters** 

**Primers** 

Tags

**Barcodes** 

**UMIs** 

**Spacers** 

Linkers



## Fragment add-ons

Spacers - for sequence elongation
Linkers - for better binding of oligonucleotides

#### Musí být přítomny:

P5/P7 – adapters for flow-cell binding SP1/SP2 – binding point for sequencing primer

#### Volitelné – ale často používané:

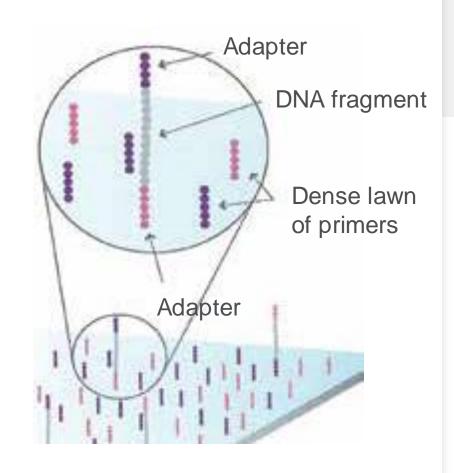
i5/i7 – sample index – to distinguish sequencing libraries

#### Volitelné:

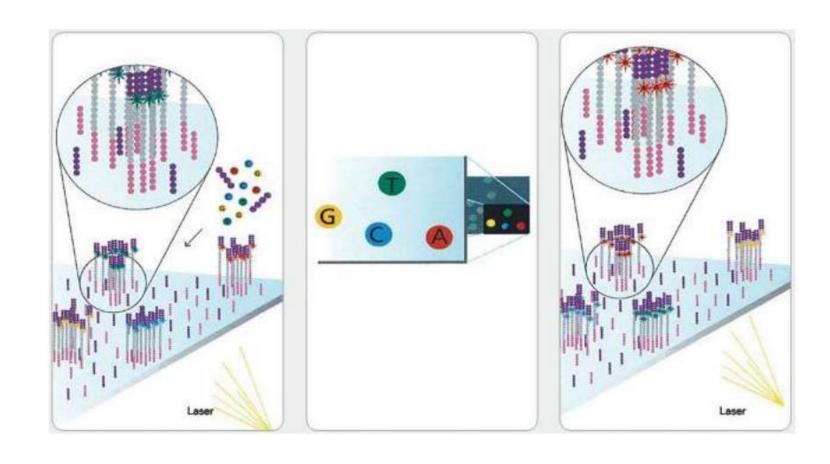
Barcode – unique sequence

UMI – Unique Molecular Identificator – for identification of PCR duplicates



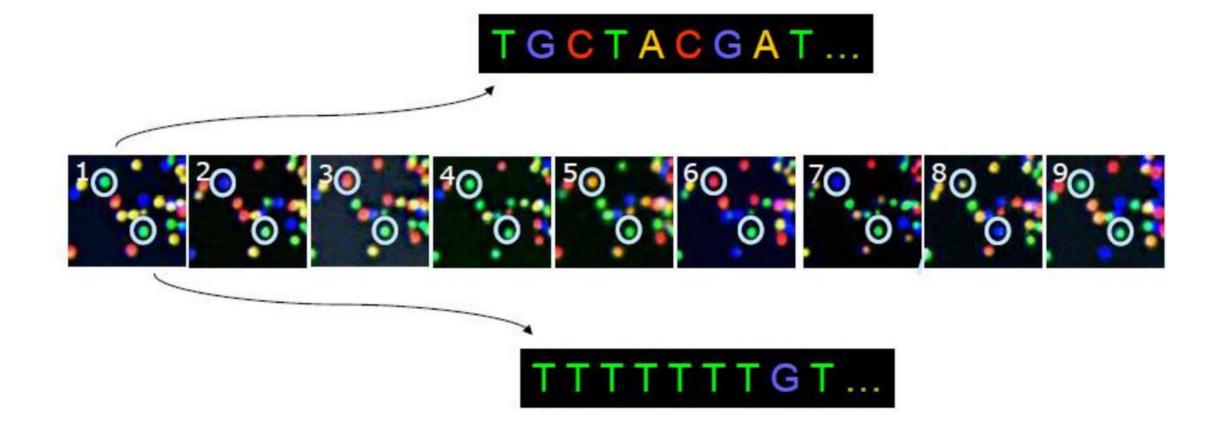

## Removal of adapters from library

- Necessary step!
- Removal of unligated adapters and adapter dimers (two adapters ligated to each other) is essential to improve data throughput and quality
- Redundant adapters often compete with library fragments for binding to a flow cell, reducing data output.
- Adapter dimers can also clonally amplify and generate sequencing "noise" that must be filtered
  out during data analysis.
- An excess of unligated adapters makes libraries more prone to index skipping during sequencing

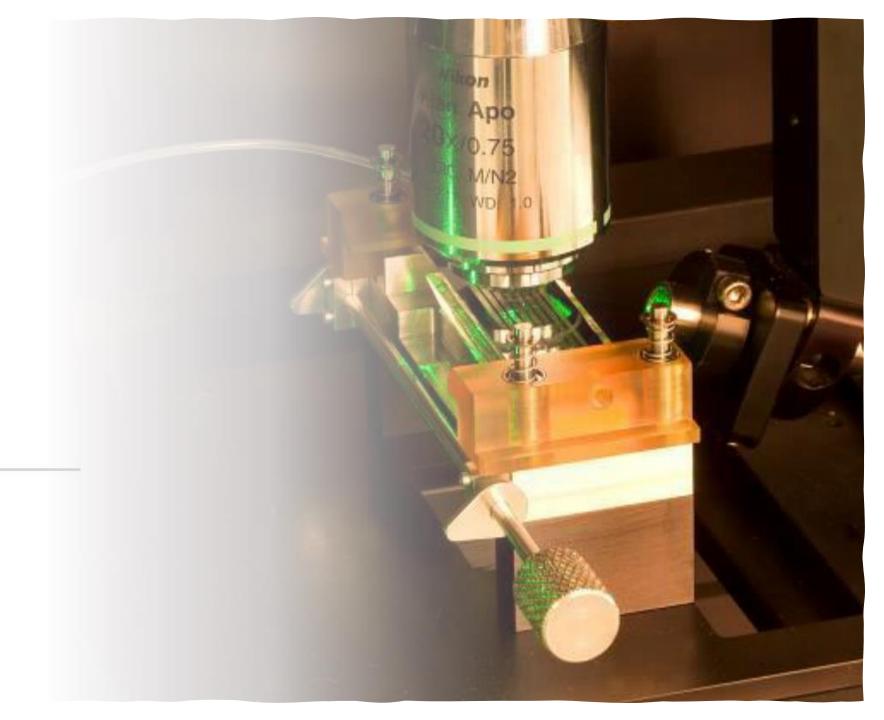

## Sources of errors: PCR duplicates

- In step 3 we are *intentionally* creating multiple copies of each original genomic DNA molecule so that we have enough of them.
- PCR duplicates occur when two copies of the same original molecule get onto different primer lawns in a flowcell.
- In consequence we read the very same sequence twice!

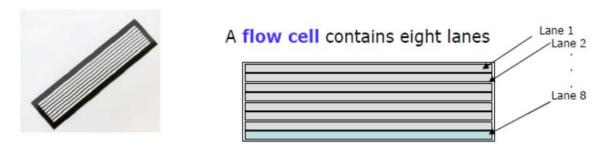
Higher rates of PCR duplicates e.g. 30% arise when you have too little starting material such that greater amplification of the library is needed in step 3, or when you have too great a variance in fragment size, such that smaller fragments, which are easier to PCR amplify, end up over-represented.



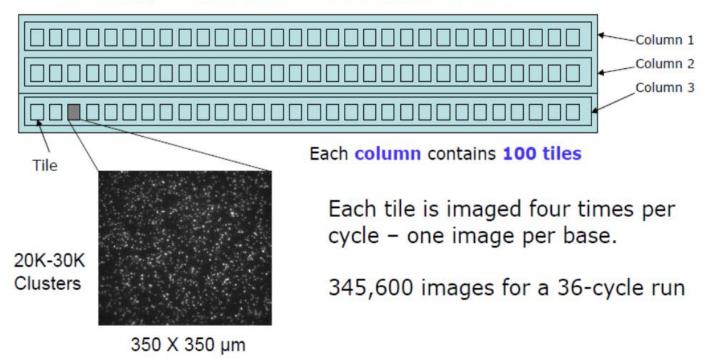

## Clusters of identical sequences are created

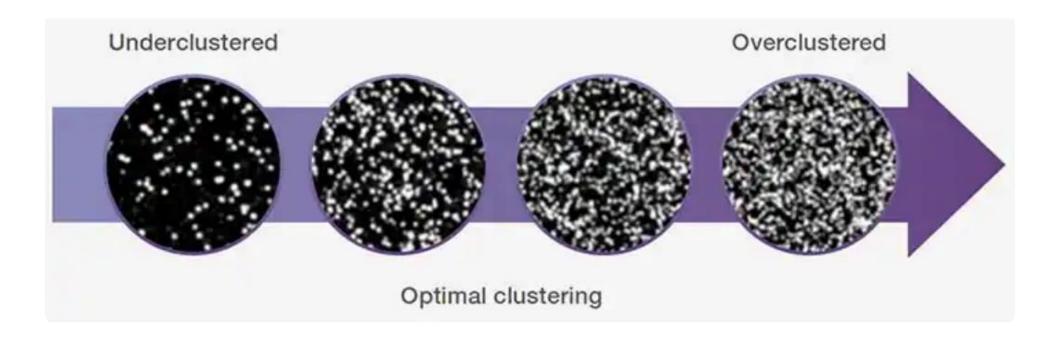



## Step 0 of analysis


- The identity of each base in the cluster is read from the sequence images
- One cycle -> four images!




Flow-cell imaging

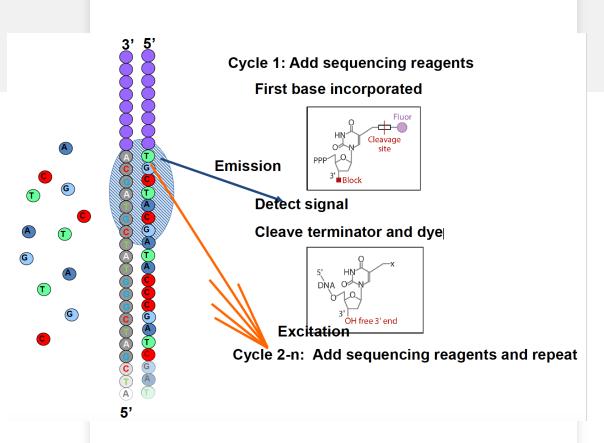



## How it works



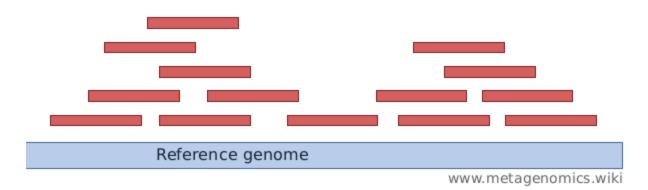
#### Each lane/channel contains three columns of tiles






### Error source: Library concentration

- The concentrations of prepared NGS libraries can vary widely due to differences in the quantity and quality of input nucleic acid, as well as in the target enrichment method that may be used.
- underclustering due to a low library concentrations can result in reduced reads against capacity
- too many clusters can result in a low-quality score and problematic subsequent analysis clusters are poorly distinguished by the image analysis program!

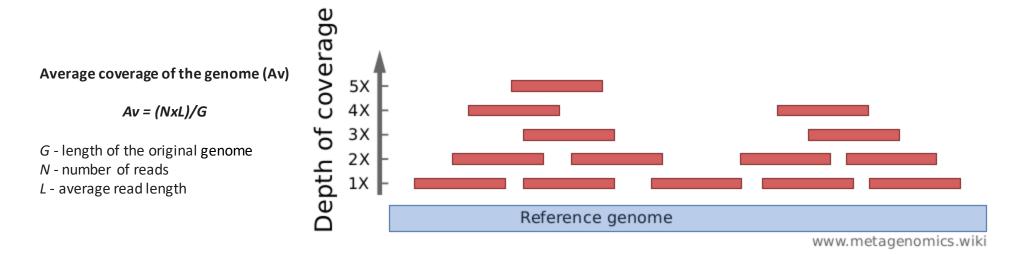

### Sources of errors: sequencing by synthesis the fluorescence

- In step 5 we amplify the signal and detect the fluorescence of each base
- The assumption is that in a cycle, every molecule on the flowcell is extended by one base
- The reality:
  - Some molecules are not extended or their base has no fluorescent dye
  - The previous fluorescent dye is not cleaved the signal from the cluster after a few cycles is a mix of signals from previous bases



## Sequencing **coverage**

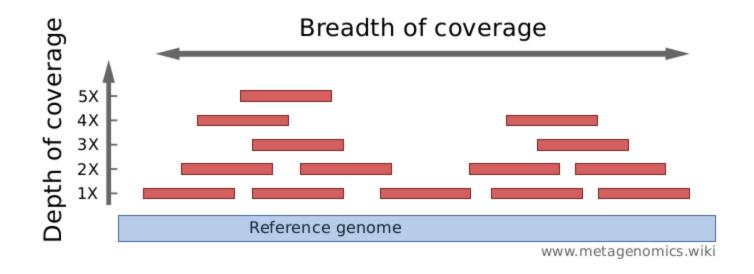
**Coverage** in DNA sequencing **is the number of unique reads that include a given nucleotide** in the reconstructed sequence.




#### Depth of coverage

(coverage depth / mapping depth)

How strongly is the genome "covered" by sequenced fragments (short reads)?


<u>Per-base coverage</u> is the average number of times a base of a genome is sequenced (in other words, how many reads cover it).



<u>The coverage depth of a genome</u> is calculated as the number of bases of all short reads that match a genome divided by the length of this genome. It is often expressed as 1X, 2X, 3X,... (1, 2, or, 3 times coverage).

## Breadth of coverage (covered length)

What proportion of the genome is "covered" by short reads? Are there regions that are not covered, even not by a single read?



<u>Breadth of coverage</u> is the percentage of bases of a reference genome that are covered with a certain depth. For example: "90% of a genome is covered at 1X depth; and still 70% is covered at 5X depth."

## Coverage recommendations

Coverage is determined based on:

Read lengths

Genome size

**Application** 

Recommendations in the literature

Gene expression levels

Complexities of the genome, repetitive regions

Average coverage of the genome (Av)

Av = (NxL)/G

G - length of theoriginal genomeN - number of readsL - average read length

- Errors in the sequencing tool or methodology
- Analysis algorithm



## Coverage recommendations / DNA

| Application Type                       | Coverage   |
|----------------------------------------|------------|
| DNA-Seq (Re-Sequencing)                | 30 - 80X   |
| DNA-Seq (De novo assembly)             | 100X       |
| SNP Analysis / Rearrangement Detection | 10 - 30X   |
| Exome                                  | 100 - 200X |
| ChIP-Seq                               | 10 - 40X   |

Average coverage of the genome (Av)

Av = (NxL)/G

*G* - length of the original genome

N - number of reads

L - average read length

## Coverage recommendations / RNA

| Sample Type                                            | Reads Needed for Differential<br>Expression (millions) | Reads Needed for Rare Transcript or<br>De Novo Assembly (millions) | Read Length                              |
|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------|
| Small Genomes (i.e. Bacteria /<br>Fungi)               | 5                                                      | 30 - 65                                                            | 50 SR or PE for positional info          |
| Intermediate Genomes (i.e.<br>Drosophila / C. Elegans) | 10                                                     | 70 - 130                                                           | 50 – 100 SR or PE for<br>positional info |
| Large Genomes (i.e. Human /<br>Mouse)                  | 15 - 25                                                | 100 - 200                                                          | >100 SR or PE for positional info        |

Different transcripts are expressed at different levels => more reads will be captured from highly expressed genes

Transcriptome complexity, alternative expression, 3' associated bias, and distribution of expression levels make coverage estimation difficult.

ATTENTION WHEN CALCULATING! We need to count mapped reads, not total reads.

### Coverage recommendations / application

| Category                 | Detection or Application          | Recommended Coverage (x) or Reads (millions) | References                               |
|--------------------------|-----------------------------------|----------------------------------------------|------------------------------------------|
| Whole genome sequencing  | Homozygous SNVs                   | 15x                                          | Bentley et al., 2008                     |
|                          | Heterozygous SNVs                 | 33x                                          | Bentley et al., 2008                     |
|                          | INDELs                            | 60x                                          | Feng et al., 2014                        |
|                          | Genotype calls                    | 35x                                          | Ajay et al., 2011                        |
|                          | CNV                               | 1-8x                                         | Xie et al., 2009; Medvedev at al., 2010  |
| Whole exome sequencing   | Homozygous SNVs                   | 100x (3x local depth)                        | Clark et al., 2011; Meynert et al., 2013 |
|                          | Heterozygous SNVs                 | 100x (13x local depth)                       | Clark et al., 2011; Meynert et al., 2013 |
|                          | INDELs                            | not recommended                              | Feng et al., 2014                        |
| Transcriptome Sequencing | Differential expression profiling | 10-25M                                       | Liu Y. et al., 2014; ENCODE 2011 RNA-Seq |
|                          | Alternative splicing              | 50-100M                                      | Liu Y. et al., 2013; ENCODE 2011 RNA-Seq |
|                          | Allele specific expression        | 50-100M                                      | Liu Y. et al., 2013; ENCODE 2011 RNA-Seq |
|                          | De novo assembly                  | >100M                                        | Liu Y. et al., 2013; ENCODE 2011 RNA-Seq |

### Coverage recommendations / application

| DNA Target-Based<br>Sequencing | ChIP-Seq                                                                  | 10-14M (sharp peaks); 20-40M (broad marks) | Rozowsky et al., 2009; ENCODE 2011 Genome;<br>Landt et al., 2012 |
|--------------------------------|---------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------|
|                                | Hi-C                                                                      | 100M                                       | Belton, J.M et al., 2012                                         |
|                                | 4C (Circularized Chromosome Confirmation Capture)                         | 1-5M                                       | van de Weken, H.J.G. et al., 2012                                |
|                                | 5C (Chromosome Carbon Capture Carbon Copy)                                | 15-25M                                     | Sanyal A. et al., 2012                                           |
|                                | ChIA-PET (Chromatin Interaction Analysis by Paired-End<br>Tag Sequencing) | 15-20M                                     | Zhang, J. et al., 2012                                           |
|                                | FAIRE-Seq                                                                 | 25-55M                                     | ENCODE 2011 Genome; Landt et al., 2012                           |
|                                | DNAse 1-Seq                                                               | 25-55M                                     | Landt et al., 2012                                               |
| DNA Methylation<br>Sequencing  | CAP-Seq                                                                   | >20M                                       | Long, H.K. et al., 2013                                          |
|                                | MeDIP-Seq                                                                 | 60M                                        | Taiwo, O. et al., 2012                                           |
|                                | RRBS (Reduced Representation Bisulfite Sequencing)                        | 10X                                        | ENCODE 2011 Genome                                               |
|                                | Bisulfite-Seq                                                             | 5-15X; 30X                                 | Ziller, M.J et al., 2015; Epigenomics Road Map                   |

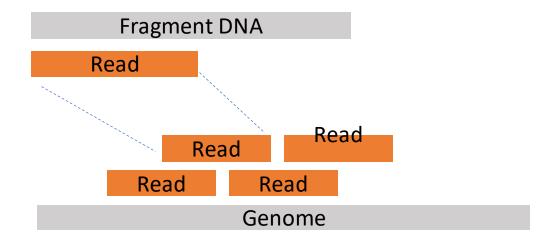
### Coverage recommendations / application

| RNA-Target-Based<br>Sequencing     | CLIP-Seq                | 10-40M | Cho J. et al., 2012; Eom T. et al., 2013; Sugimoto Y. et al., 2012 |
|------------------------------------|-------------------------|--------|--------------------------------------------------------------------|
|                                    | iCLIP                   | 5-15M  | Sugimoto Y. et al., 2012; Rogelj B. et al., 2012                   |
|                                    | PAR-CLIP                | 5-15M  | Rogelj B. et al., 2012                                             |
|                                    | RIP-Seq                 | 5-20M  | Lu Z. et al., 2014                                                 |
| Small RNA (microRNA)<br>Sequencing | Differential Expression | ~1-2M  | Metpally RPR et al., 2013; Campbell et al., 2015                   |
|                                    | Discovery               | ~5-8M  | Metpally RPR et al., 2013; Campbell et al., 2015                   |

# How many samples per run?

It depends on the platform used and its maximum and required number of reads per sample (in millions)

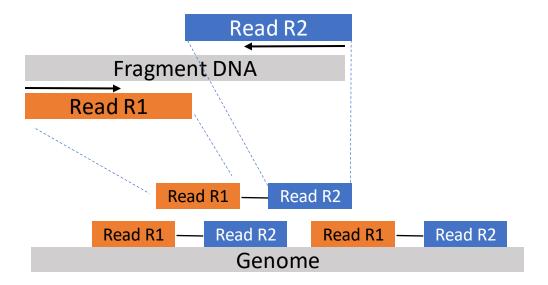
#### **Numbers of Single Reads by Instrument Manufacturer**


| Platform | Instrument                    | Unit | Reads / Unit | Reference |
|----------|-------------------------------|------|--------------|-----------|
| Illumina | HiSeq X Ten                   | Lane | 375,000,000  | 1         |
| Illumina | HiSeq 3000/4000               | Lane | 312,500,000  | 1         |
| Illumina | HiSeq NextSeq 500 High-Output | Run  | 400,000,000  | 2         |
| Illumina | HiSeq NextSeq 500 Mid-Output  | Run  | 130,000,000  | 2         |
| Illumina | HiSeq High-Output v4          | Lane | 250,000,000  | 3         |
| Illumina | HiSeq High-Output v3          | Lane | 186,048,000  | 3         |
| Illumina | HiSeq Rapid Run               | Lane | 150,696,000  | 3         |
| Illumina | HiScanSQ                      | Lane | 93,024,000   | 3         |
| Illumina | GAIIx                         | Lane | 42,075,000   | 3         |
| Illumina | MiSeq v3                      | Lane | 25,000,000   | 4         |
| Illumina | MiSeq v2                      | Lane | 16,000,000   | 3         |
| Illumina | MiSeq                         | Lane | 5,000,000    | 3         |
| Illumina | MiSeq v2 Micro                | Lane | 4,000,000    | 5         |
| Illumina | MiSeq v2 Nano                 | Lane | 1,000,000    | 5         |

<u>Designing Next-Generation Sequencing Runs (genohub.com)</u>

### Single or paired-end?

#### Single-end sequencing

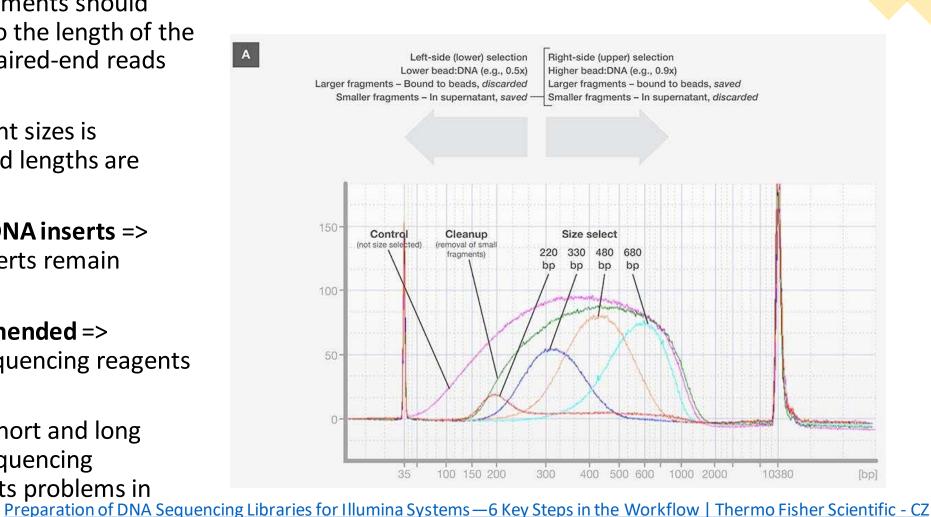

- Pros: fast, cheap
- Cons: limited use
- Useage: usually sufficient for studies looking to detect counts rather than structural changes, such as RNA-Seq or ChIP-Seq



### Single or paired-end?

#### Paired-end sequencing

- Pros:
  - greater accuracy, double the number of reads per sample in one run (higher capacity) for less than the cost of two sequencing runs
- Cons: slower, more expensive (relatively)
- Usage:
  - de novo genome assembly
  - Analysis of structural changes (deletions, insertions, inversions) and SNPs
  - A study of splicing variants
  - Epigenetic modifications (methylation)




### Read length

- Longer read lengths provide more precise information about the relative positions of the bases in the genome, they are more expensive than shorter ones.
- 50-75 cycles are typically sufficient for simple mapping of reads to a reference genome and quantifying experiments e.g. gene expression (RNA-Seq)
- Read lengths greater than or equal to 100 are typically chosen for genome or transcriptome studies that require greater precision
- The exact read length depends on the length of the inserts!!!

### Read length and fragments

- The length of the fragments should roughly correspond to the length of the read (in the case of paired-end reads their sum)
- Uniformity of fragment sizes is essential because read lengths are limited
- Significantly longer DNA inserts => some parts of the inserts remain unsequenced.
- Shorter than recommended => suboptimal use of sequencing reagents and resources.
- The combination of short and long inserts => reduces sequencing efficiency and presents problems in data analysis.



## Read length and fragments!

Read length is limited by the sequencing platform and reagent kit

| Reagent                                   | Туре                         | Reagent Kit<br>Size | Maximum Number of<br>Cycles | Additional Cycles Needed for Dual Index?    |
|-------------------------------------------|------------------------------|---------------------|-----------------------------|---------------------------------------------|
| iSeq™ 100                                 | i1 (v1 or v2)                | 300                 | 322                         | No                                          |
|                                           | Rapid Kit                    | 100                 | 128                         | Yes - 7 cycles                              |
| MiniCoa™                                  | Liele Outeut as              | 75                  | 92                          |                                             |
| MiniSeq™                                  | High Output or<br>Mid Output | 150                 | 168                         | No                                          |
|                                           | Mid Output                   | 300                 | 318                         | 1                                           |
|                                           | v2                           | 50                  | 79                          |                                             |
|                                           | (including Micro and Nano    | 300                 | 329                         |                                             |
| MiSeq™                                    | kits)                        | 500                 | 529                         | Yes - 7 cycles                              |
|                                           | v3                           | 150                 | 179                         |                                             |
|                                           |                              | 600                 | 629                         |                                             |
|                                           |                              | 75                  | 92                          | No                                          |
| NextSeq <sup>™</sup> 500/550              | High Output or Mid Output    | 150                 | 168                         |                                             |
|                                           |                              | 300                 | 318                         |                                             |
|                                           |                              | 50                  | 79                          |                                             |
|                                           | Rapid SBS v2                 | 200                 | 229                         |                                             |
| HiSeq <sup>™</sup><br>1000/1500/2000/2500 |                              | 500                 | 529                         | 7 avalage was wined for pained and flavor   |
|                                           | TruSeq SBS v3                | 50                  | 58                          | 7 cycles required for paired-end flow cells |
|                                           |                              | 200                 | 209                         | Cells                                       |
|                                           | LiiCam CDC (14               | 50                  | 79                          |                                             |
|                                           | HiSeq SBS v4                 | 250                 | 279                         |                                             |

| Sequencing Platform       | SBS Kit Version | Maximum Read Length |
|---------------------------|-----------------|---------------------|
| :0100                     | v1              | 2 x 151bp           |
| iSeq 100                  | v2              | 2 x 151bp           |
| MiniCon                   | MO*             | 2 x 151bp           |
| MiniSeq                   | HO*             | 2 x 151bp           |
| MiSeq                     | v2              | 2 x 251bp           |
|                           | v3              | 2 x 301bp           |
| NextSeq 500/550           | MO*             | 2 x 151bp           |
|                           | HO*             | 2 x 151bp           |
| NextSeq 1000/2000         | P1, P2, P3      | 2 x 151bp           |
| HiSeq 1000/1500/2000/2500 | HO* v3          | 2 x 101bp           |
|                           | HO* v4          | 2 x 126bp           |
|                           | RR** v4         | 2 x 251bp           |
| HiSeq 3000/4000           | N/A             | 2 x 151bp           |

Maximum read length for Illumina sequencing platforms

How many cycles of SBS chemistry are in my kit? (illumina.com)

#### More resources

- Practical tips for lab library preparation: <u>Preparation of DNA Sequencing Libraries for Illumina Systems—6 Key Steps in the Workflow | Thermo Fisher Scientific CZ</u>
- Practical tips for sequencing run setup: <u>Designing Next-Generation</u> <u>Sequencing Runs (genohub.com)</u>
- Indexed sequencing Illumina guide: <u>Indexed Sequencing Overview Guide</u> (15057455) (ox.ac.uk)
- <u>Sequencing depth and coverage: key considerations in genomic analyses</u> |
   Nature Reviews Genetics