Avalanche Statistics H. Schindler, R. Veenhof Basics Since charge amplification is a stochastic process, the size of an electron avalanche is subject to fluctuations probability P(n x) that an avalancheavalanche is subject to fluctuations probability P(n, x) that an avalanche initiated by 1 electron comprises n electrons after a distance x. The shape of the avalanche size distribution can be important for the detection performance – contribution to energy resolution – detection efficiency threshold In this talk we discuss avalanches in  uniform fields initiated by single Puniform fields initiated by single electrons. efficiency n Overview At low fields E/p and moderate gain electron avalanches exhibitelectron avalanches exhibit – exponential growth with distance – exponentially distributed fluctuations Methylal, E/p = 70 V cm‐1 Torr‐1 p y With increasing field the distribution departs  Methylal, E/p = 186.5 V cm‐1 Torr‐1 from the exponential shape becoming more  and more rounded (while the growth remains  exponential) The relative width decreasesexponential). The relative width decreases,   the maximum is shifted towards the mean. At high gain space charge leads to a  departure from the exponential growth,  additional deviations from the exponential Methylal, additional deviations from the exponential shape are observed. E/p = 74.8 V cm‐1 Torr‐1 Gain ≈ 107 H. Schlumbohm, Zur Statistik der Elektronenlawinen im Ebenen Feld. III, Z. Phys. 151 (1958) 563‐576 Low Fields: Yule - Furry Model (I) Key assumption: probability αΔx of ionising collision within a step Δx common to all electrons in the avalanchecommon to all electrons in the avalanche P(n x + Δx) = [1 – nα(x) Δx]P(n x) + (n – 1)α(x)ΔxP(n – 1 x) + O(Δx2)P(n, x + Δx)  [1  nα(x) Δx]P(n, x) + (n 1)α(x)ΔxP(n  1, x) + O(Δx ) no multiplication 1 electron ionises Letting Δx → 0 yields the differential equation ( ) ( )( ) ( ) ( ) ( ) 1)0(11 d nPxnnPxxnPnxxnP δαα =−−−=( ) ( )( ) ( ) ( ) ( ) 1,)0,(    ,,,11, d nnPxnnPxxnPnxxnP x δαα x d Substituting →( )∫= x ssu 0 dα ( ) ( ) ( ) ( )unnPunPnunP u ,,11, d d −−−= ( ) 1n Solution: geometric distribution W Bl W Ri l L R l di P ti l D t ti ith D ift Ch b S i 2008 ( ) ( ) 1 1, −−− −= nuu eeunP W. Blum, W. Riegler, L. Rolandi, Particle Detection with Drift Chambers, Springer 2008 W. Legler, Zur Statistik der Elektronenlawinen, Z. Phys. 140 (1955) 221‐240 Low Fields: Yule - Furry Model (II) Mean and variance are given by ( ) ( )1      ,dexp 2 0 −=⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∫= nnssn x σα Write P(n, x) in terms of → no explicit dependence on xn 1 1 1 1 ),( − ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −= n nn xnP For P(n x) is 1 ( )nPn 20=n 1>>nFor , P(n, x) is well approximated by an  exponential distribution 1>>n (variance equal to mean). 1 1 )( 2 / ≈≈ − σnn exnP 0.5 1 n     ,),( 2 ≈≈ e n xnP 0 0 1 2 3 4 5nn/ Attachment (I) Many non‐noble gases attach electrons at somewhat lower than ionisation energies (typically > 5 eV) Some RPC gases massively attach at all energiesenergies (typically > 5 eV). Some RPC gases massively attach at all energies  (SF6).  Main effect of attachment: electrons can be lost within the first steps priorp p to any multiplication.  To overcome attachment, the initial multiplication must be large. Total cross section Total cross sectionTotal cross section Attachment Attachment AttachmentAttachment Attachment Attachment Attachment (II) Introduce attachment coefficient η [1/cm]  P(n, x+Δx) = [1 – n(α+η)Δx]P(n, x) + (n–1)αΔxP(n–1, x) + (n+1)ηΔxP(n+1, x) + … "nothing " happens 1 electron ionises 1 electron attachesnothing  happens 1 electron ionises 1 electron attaches ⎪ ⎧ = 0/ nαη Solution for : (W. Legler) ( ) 1>>= − x en ηα ( ) ( )⎪⎩ ⎪ ⎨ ⎧ >⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −− − = = 0   ,/1exp /1 0  ,/ ),( 2 n n n n n xnP αη αη αη Considering only avalanches with n > 0, mean and variance are given by ( ) 2 *2*       , /1 n e n x = − = − σ αη ηα Distribution remains exponential. W L l Di St ti tik d El kt l i i l kt ti G b i h h F ld tä k d b i ßW. Legler, Die Statistik der Elektronenlawinen in elektronegativen Gasen, bei hohen Feldstärken und bei großer  Gasverstärkung, Z. Naturforschg. 16a (1961), 253‐261 Beyond the Yule-Furry Model To understand/reproduce rounded spectra as observed at higher fields,  more elaborate models are requiredmore elaborate models are required.  In particular the assumption that all electrons take part in theIn particular, the assumption that all electrons take part in the multiplication process with equal probability must be abandoned. Analytical models incorporating the ionisation threshold and inelastic  interactions exist (more later)  useful for qualitative understanding For the quantitative prediction of avalanche spectra, Monte Carlo  i l ti t it bl hsimulation represents a more suitable approach. Avalanche Simulation in Garfield Since mid 2008 Garfield includes routines for microscopic Monte Carlo  simulation of electron transport using Magboltz cross‐sectionssimulation of electron transport using Magboltz cross‐sections – MICROSCOPIC_AVALANCHE – DRIFT MICROSCOPIC ELECTRON 100_ _ Output 50 Ar, E = 30 kV/cm, p = 1atm – numbers of produced electrons and ions – electron trajectories l t di t ib ti 0 μm] – electron energy distribution – interaction rates 0 x [ Here we discuss spectra for uniform fields.  The microscopic tracking procedures can ‐50 p g p be used with arbitrary geometries though.‐100 0 50 100 150 200 y [μm] The modification of the field due to space charge is not taken into account size dependent effects cannot be reproduced. Experimental Data (I) Validation of simulation results by comparison with pulse height spectra measured in parallel‐plate chambersmeasured in parallel‐plate chambers We use data fromWe use data from – H. Schlumbohm, Zur Statistik der Elektronenlawinen im Ebenen Feld. III,  Z. Phys. 151 (1958) 563‐576 – A. H. Cookson and T. J. Lewis, Variations in the Townsend first ionization coefficient for gases, Brit. J. Appl. Phys.  17 (1966) 1473‐1481 – P Fonte et al Single‐electron pulse‐height spectra in thin‐gap parallel‐plate– P. Fonte et al., Single‐electron pulse‐height spectra in thin‐gap parallel‐plate  chambers, Nucl. Instr. Meth. A 433 (1999) 513‐517 Avalanches are initiated by single electrons emitted from the cathode due  to illumination with UV light. Excursion: Pólya Distribution 1 ( ) ( ) ( ) ( ) nn e n n n nP /1 1 11 +− + ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ 1+Γ + = θ θθ θ θ ( )nPn 1 θ = 0 θ = 0.5 θ = 1.5 θ = 1.5 Relative variance falls with increasing shape parameter θ ( )1/1/ 22 += θσ n 0.1 θ = 1 falls with increasing shape parameter θ By tuning θ good agreement withBy tuning θ good agreement with measured spectra can be achieved. nn/ 0.01 0 1 2 3 4 5 Physical significance of θ is dubious. nn/ "Derivation": introduce size dependent multiplication probability α(n, x) = α(x)[1 + θ/n] J. Byrne, Statistics of the electron multiplication process in proportional counters,  Proc. R. Soc. Edinburgh A  66 (1962) 33‐41 A Lansiart and J P Mor cci Amplication ga e se dans n compte r proportionnelA. Lansiart and J.‐P. Morucci, Amplication gazeuse dans un compteur proportionnel J. Phys. Radium (Supplement) 23/S6 (1962) 102A‐104A Comparing Spectra At Different Gain (I) Experimental data are given for gain values ≈ 104 – 106, while reasonable avalanche sizes for simulation are of order 102 – 103avalanche sizes for simulation are of order 10 – 10 . Convenient figures of merit to characterise the "roundness" areConvenient figures of merit to characterise the roundness  are – shape parameter θ of fitted Pólya function – relative width of the distribution f = σ2 /  2 n To what extent are these parameters size‐dependent? Hypothesis: for the shape of the distribution is independent of the mean size (provided that E/p is kept constant!) 1>>n ( )1 H If th fi ld i lt d d i th l h th ( ( )nn n xnP / 1 ),( ϕ= However: If the field is altered during the avalanche growth (space  charge), the shape of the distribution does depend on the gap! Comparing Spectra At Different Gain (II) 2 Garfield: with increasing gap (and thus increasing size) the Pólya fit parameter approaches an asymptotic value θ 1 Methane E/p = 156 V cm‐1Torr‐1 the Pólya fit parameter approaches an asymptotic value 1 Methylal E/p = 186.5 V cm‐1Torr‐1 Experimental evidence ( ) mean size 0 200 600 1000 P(n) Methane E/p = 130 V cm‐1Torr‐1 ( )nPn G. Vidal, J. Lacaze and J. Maurel, Microscopic evolution of the ionizing collision frequency in Townsend  avalanches, J. Phys. D: Appl. Phys. 7 (1974) 1684‐1698 Is this a universal feature?  use general statistical relations to calculate  the evolution of the moments of the size distribution. Excursion: Some Statistics … (I) Recall: P(n, x) denotes the size distribution after a step x for one primary electronelectron Assuming that the individual avalanches evolve independently theAssuming that the individual avalanches evolve independently, the distribution for k primary electrons is given by k‐fold convolution of P(n, x)  for large k the size distribution tends to a normal distribution (central limit theorem) Th i l l l h i di ib i f 2 i i bThe single electron avalanche size distribution after a step 2x is given by ( ) ( ) ( )xnnPxnPxnP n n n ,','2, '* 1' −∑= = where P*n' is the n' ‐fold convolution of P. n 1 "As one can easily show ": mean and variance after two steps are given by ( ) ( )2 2 xnxn = ( ) ( ) ( )[ ] ( )xxnxnx 22 12 σσ +=( ) ( )2 xnxn = ( ) ( ) ( )[ ] ( )xxnxnx 12 σσ += Excursion: Some Statistics … (II) Mean and variance after k steps are given by ( ) ( )xnkxn k = ( ) ( ) ( )∑ − = −+ = 1 0 122 k i ik xnxkx σσ The relative variance evolves as ( ) ( ) ( )⎞⎛ k22 ( ) ( ) ( ) ( ) ( ) ( ) ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − − = xn xn xn x kxn kx k 11 112 2 2 σσ The growth of the relative width is bounded (if )( ) 1>xn Once is large, the relative width barely grows further.n Experimental Data (II) Exp. Data Garfield 1 Methylal E/p = 76 5 V cm‐1Torr‐1 Methylal E/p = 105 V cm‐1Torr‐1 ( )nPn Schlumbohm (1958): Observation of di ff 0.1 E/p = 76.5 V cm 1Torr 1 E/p = 105 V cm 1Torr 1 rounding‐effect at high E/p in several gas mixtures. Plots Gain ≈ 1.4×105Gain ≈ 1.4×105 gas mixtures. Plots  are available for methylal, acetone d l h l 0.01 1 and alcohol. F i ith1 Methylal E/p = 186.5 V cm‐1Torr‐1 Methylal E/p = 426 V cm‐1Torr‐1 ( )nPn For comparison with  the simulation, the avalanche size is  0.1 45 normalised to the  mean obtained from  Pól fitGain ≈ 7×104Gain ≈ 1×105 a Pólya fit. 0 1 2 3 4 5 0.01 0 1 2 3 4 5nn/ nn/ Experimental Data (III) Cookson and Lewis (1966): Measurements in methane fitted with Pólya curvesMeasurements in methane, fitted with Pólya curves Plot E/p Pólya fit parameter θ [V cm‐1Torr‐1] Cookson/Lewis Garfield (a) 48.2 0.0 0.13 (b) 51.3 0.1 0.15 ( ) 78 9 0 3 0 36(c) 78.9 0.3 0.36 (d) 120.0 0.4 0.76 (e) 156.0 1.0 1.21 (f) 218.0 1.2 1.99 Garfield simulation: Tendency of rounding is reproduced, shape deviates somewhat from i lexperimental spectra avalanche n0 2×106 avalanche chains Experimental Data (IV) P. Fonte et al. (1999): Measurements with a range of gas mixtures and gaps of   0.6 mm and 1.2 mm. Data files with parametrisations of the gain spectra  ( bli h d) id d b P l F Th d f 1 2 l k(unpublished) were provided by Paulo Fonte. The data for 1.2 mm gaps looks  cleaner. The data show a steep fall of relative RMS with increasing E field, while Garfield predicts a more g , p gentle decrease. Example: 90% Ar + 10 % C2H6 (similar disagreement for all other mixtures) GarfieldGarfield data 1.2 mm data 0.6 mm data 0.6 mmdata 0.6 mm Compiled from numerous gas mixtures 0.6 mm 1 2 mm 0.6 mm 1 2 mm Gain seems to be the  driving factor for the  Compiled from numerous gas mixtures 1.2 mm 1.2 mm shape of these  spectra. Analytical Models (I) Legler‘s model: threshold energy for ionisation ionisation probability depends on electron energy or the distance travelled since the lastdepends on electron energy or the distance travelled since the last  collision, respectively. If the electron starts a a ionisation probability distribution of ionisation mean free path with zero kinetic energy, the minimum step length b ti t d α distance to α distance to can be estimated as x0 ≈ Ui/E. Exponential growth requires that a = α / (2exp(‐αx0) – 1). x0 distance to previous collision x0 distance to previous ionisation q / ( p( 0) ) relative width: 0 6 0.8 1 ( ) 124 12 00 0 2 2 2 2 −− − == −− − xx x ee e n f αα α σ 0 0.2 0.4 0.6 f W. Legler, Die Statistik der Elektronenlawinen in elektronegativen Gasen, bei hohen Feldstärken und bei großer Gasverstärkung, Z. Naturforschg. 16a (1961) 253‐261 0 0 0.6αx0 nn/ G. D. Alkhazov, Statistics of Electron Avalanches and Ultimate Resolution of Proportional Counters, Nucl. Instr Meth. 89 (1970) 155‐165  Analytical Models (II) Stepwise evolution: multiplication occurs in  steps of fixed length x After each step an ionisation probability steps of fixed length x0.  After each step an  electron ionises with probability p or loses  its energy through another process with probability 1 – p.  2 3 relative width:  2 0.8 1 x0 2x0 3x0 Toy MC (stepwise evolution) entries 12 1 1 0 2 2 −= + − ≈= − x e p p n f ασ 0.2 0.4 0.6 f 1000 Alkhazov‘s model 3: distribution of inelastic lli i b bilit i b t f ti 0 0 0.6αx0 p = 0.05 p = 0.10 p = 0.50 p = 0.60 1000 collision probability given by step‐function;  probability of ionisation in each inelastic collision given by p p  0.10 P = 0.20 p = 0.30 p = 0.40 p P = 0.70 g y p ( ) ( ) ( ) 1112 112)31( 00 00 2 22 −+−+ ++−+ ≈ −− −− xx xx epep epep f αα αα n 100 200 300 400 p 100 G. D. Alkhazov, Statistics of Electron Avalanches and Ultimate Resolution of Proportional Counters, Nucl. Instr Meth. 89 (1970) 155‐165  ( ) ( ) Analytical Models (III) Closed‐form expressions for these distributions are not available, but their shape can be characterised in terms of the moments. The models reflect (in a simplified way) energy dependence of electron atom M th l l0 8 1 – energy dependence of electron‐atom collision cross‐sections – interplay between ionisation and f Methylal0.8 other inelastic collisions The relative width falls with increasing Exp. Data Garfield Legler‘s model 0.4 The relative width falls with increasing parameter αx0 (x0 ∝ 1/E) and/or increasing ratio ionisation/excitation. E/p [V/cm] 100 200 300 400 Legler s model Step model 0 Side note:  i i ti b bilit distribution of ionisation E/p [V/cm] Which distribution of the ionisation mean free path would lead to the ionisation probability θ = 0.5 α θ = 0.5 mean free path would lead to the Pólya function? θ = 1 distance to previous collision θ = 1 distance to previous ionisation Case Study: Argon 2 energy distribution p = 1 atm E = 25 kV/cm Pólya fit parameter θ 1.5 E = 25 kV/cm E = 30 kV/cm E = 40 kV/cm E = 50 kV/cm y p 1 E = 60 kV/cm relative variance f 0.5 0 4 0 5 10 15 20 25 30 electron energy [eV] 20 30 40 50 60 E [kV/cm] 0 distribution of distance to first ionisation 0.3 0.4 inelexcion ion NNN N ++ p = 1 atm E = 20 kV/cm E = 30 kV/cm E = 40 kV/cm 0.2 E = 40 kV/cm 0.1 ionisation vs. excitation 0 5 10 15 20 25 distance [μm] 20 30 40 50 60 0.0 E [kV/cm] Case Study: 80% Ar + 20% CO2 2 energy distribution p = 1 atm E = 20 kV/cm 1.5 E = 20 kV/cm E = 30 kV/cm E = 40 kV/cm E = 50 kV/cm relative variance f 1 E = 60 kV/cm Pólya fit parameter θ 0.5 0 4 electron energy [eV] 20 30 40 50 60 E [kV/cm] 0 0 5 10 15 20 25 30 distribution of distance to first ionisation 0.3 0.4 inelexcion ion NNN N ++ p = 1 atm E = 25 kV/cm E = 30 kV/cm E = 40 kV/cm 0.2 ionisation vs. excitation E = 40 kV/cm 0.1 distance [μm] 20 30 40 50 60 0.0 E [kV/cm] 0 5 10 15 20 25 Methylal CH2(OCH3)2 akaaka – DMM – dimethoxy 1000 total vibration vibration vibrationy methane – formal 100 excitation excitation ionisation Excitations 6 3 V 10 cm2] – 6.3 eV – 8.3 eV 1 σ[10‐16c Ionisation – 10 eV 0.1 0.01 0.01 0.1 1 10 100 energy [eV] Methane CH4 Dissociation – 9 eV 100 – 10 eV – 11 eV 10 – 11.8 eV Ionisation 1 cm2] Ionisation – 12.99 eV 1 σ[10‐16c 0.1 0.01 0.1 1 10 1000.1 1 10 100 energy [eV] el tot el mt vib vib vib vib vib har vib har diss diss diss diss diss ion Argon Excitation – 11.55 eV 100 total elastic ionisation excitation (sum) – 13 eV – 14 eV 10 excitation (sum) Ionisation – 15.7 eV cm2] 1 15.7 eV σ[10‐16c 0.1 0 010.01 0.001 0.1 1 10 100 energy [eV] Comparing Gases (I) 100 % CO2 20 % CO2 10 % CO2 0 % CO2 Comparing Gases (II) 100 % CO2 20 % CO2 10 % CO2 0 % CO2 10 % CH44