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Motivation

Electric field determines, which plasmochemical processes take place
in the plasma.

It determines how the coupled energy is distributed.
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[A Bogaerts et al, ACS Energy Lett. 3 1013-27, 2018]: Fraction of electron energy
transferred to different channels of excitation, as well as ionization and dissociation of
N>, as a function of the reduced electric field.
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Motivation

Ex.: conversion COs, — C + O5: N B
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[R Snoecks, A, Bogaerts, Chem. Soc.
Rev., 2017,46, 5805-5863]
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"Electric field" vs. "Reduced electric field"

@ Electric field: E, [V - m™1]
@ Reduced electric field: E/N, [Td=10"2" V -m?]

» connected with the amount of energy gained by charged particle in
the el. field between two collisions:

e=q-U=q-A-E=

SHEe]
m

N

» A [m] — mean free path between two collisions, A = ;—N
» o [m?] - collisional cross section
» N [m~3] — concentration of particles
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Diagnostic methods exhibition

@ electrical probes:
» equivalent circuit
» capacitive probes
» Pockels-effect-sensitive crystals
@ optical emission spectroscopy:
» Townsend coefficient
» line intensity ratio (FNS/SPS)
» Stark broadening, Stark polarization emission spectroscopy
» bremsstrahlung (Z. Navratil)
@ laser-based methods:
» CARS (Coherent anti-Stokes Raman scattering)

» laser-induced fluorescence dip spectroscopy
» EFISH
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Electric field induced second harmonic generation
(EFISH)

Electric field in a gas — polarisation of the gas — optical anisotrophy
— second harmonics generation

pow2ermeter DBD reactor
a

photodiode Nd:YAG laser

5

2b photomultiplier

Signal is week, coherent, line-integrated
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A trip to the nonlinear optics
@ nonlinear polarization:

1 2 3
Pr = eolxy B+ Xji EiEk + Xy E/EKE) + ..
» P; —induced polarisation of the material

» E; — electric field intensity
» x(" —the n-th order nonlinear susceptibility tensor

@ wave equation: 10°E 9P
2or ~ 1%
@ second harmonics generation:

Ej = Ex = Eg cos(wt)

P? = eox|s EiEk = eox\y ES cos®(wt) =

]
1 2 1 2
= EGOX/(jk) Eg + éeo)(,(jk) Eg cos(2wt)

° X,(j,z() = 0 in a centrosymmetric media
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A trip to the nonlinear optics - EFISH

EFISH:
E = Ex = E@ cos(wt), Ej = Eext

@ induced polarization at the second harmonic frequency:

2 3 (3
P,-( ) Exfjk;(—Zw,O,w,w)Eext(E(“’))z
@ signal intensity scales with the square of the induced polarization:

j20) [x“) E.. ,(w)] 2
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EFISH equations for homogeneous field

+V

Laser in -L L“!d
- -
EFISH in homogeneous el. field £ = Y:

(2w) (3) (w) sm(AkL) 2

/ X |« -N - . EEXt . T
» /(2¥) _ EFISH signal intensity
» «3) —third order nonlinear hyperpolarizability of the gas
» N —gas number density
» /(@) —intensity of the primary laser beam e B
» E. —external el. field (that’s what we measure)| /= = szm) |
» Ak = (2k, — ko.,) — Wave vector mismatch [/ (Bk-2)
» L —interaction length
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And that’s how we do it!

@ If the gas composition, shape of the laser beam nor the spatial
distribution of the external field ex,:is ) do not change during the
whole measurement and calibration:

129 = A (J@)2. E2

@ We find the calibration constant A by measurement of signal
dependency on the known el. field (Laplacian field,
sub-breakdown conditions)

@ The desired el. field is determined from

\/ /(Zw)

VA-I

Eo =
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EFISH strengths

high spatial and temporal resolution
(~ laser pulse duration and shape)

it works for most of gases

nonresonant method, any laser
wavelength

sensitivity ~ 1 kV/cm

only one laser beam — simple
alignment

polarisation of the signal || Eext
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[Dogariu et al, Phys. Rev. Applied
7, 024024 (2017)]
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EFISH limitations

@ line-integrated signal — uncertainty in signal origin; the signal can
also originate surprisingly far from the focusal point

@ unintuitive dependancy on L, difficult calibration if the shape of the
field is unknown
@ signal is dependent on the gas composition — forex.
(x(s) ~ 20 - DC(S)
vzduch He
@ for calibration, extrapolation of the field is often needed

@ signal is dependent on frequency Eex:
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Figure 1. (a) Schematic of a canonical geometry typically used in E-FISH dingnosis. The top electrode is held at a potential of V with
respect to the grounded bottom electrode. (While this illustration presents a focused probe beam, it should be understood that in the case of a

plane-ware. the inteasity of the probe beam i canstant with respedt 1 space and time.) (b) Conresponding schemaic of the
d, llel: used for By translating red arrow in figure inset), the effective’

dlectrode length ivertical red dashed line) seen by the E-FISH probe beam is varied.

[T L Chng et al Plasma Sources Sci. Technol. 29 (2020) 125002]




E-FISH Signal vs Electrode Length (Constant Ak =-0.5 cm!)
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EFISH successfull results

P =20 mbar, V = 1.6 cm/ns
P = 40 mbar, V = 1.2 cmins
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Figure 4. Longitudinal electric field temporal profile at 500 jum

Time, ns
from the cathode obtained using the E-FISH technique
Figure 7. Reduced electric field measured in the front of a fast (line +symbol line) compared with the electric field profile
ionization wave discharge in nitrogen at P = 20-100 mbar, plotted calculated as a voltage over gap length ratio (dashed line). He:N, =

5:1 mixture at 900 mbar, negative polarity discharge. The letters
denote the boundaries of the regions with different field behavior;
See text.

on the same scale

[T L Chng et al 2019 Plasma Sources Sci.
Technol. 28 045004] [N D Lepikhin et al 2021 J. Phys. D: Appl.
Phys. 54 055201]
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without output window
without both windows

with windows
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Experimental part

powermeter  DBD atomizer
2a 5arf\1la

1b photodiode‘ Nd:YAG laser

photomultiplier

Tasks:

@ align the optical setup
o find the EFISH signal

@ measure the dependency on the voltage amplitude or the
discharge phase
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