

Central European Institute of Technology BRNO | CZECH REPUBLIC

TEM imaging

Fall 2023

Ondrej L. Shanel, Ph.D.

Transmision electron microscopy - TEM

- TEM mode Image of an illuminated sample is magnified onto a camera
- STEM Mode Focused Beam scanning over the sample \rightarrow processed signal creates an image

Transmision electron microscopy – Optical modes

Dr. Konečhá – CPO VUT 2022/2023

Elastic scattering on a signle atom

Final electron wave function after the interaction with an atom:

$$\psi_{\rm S}(\mathbf{r}) = \psi_{\rm inc}(\mathbf{r}) + f_e(q) \frac{\exp(\mathrm{i} \mathbf{q} \cdot \mathbf{r})}{r}$$

Scattering cross section:
$$\sigma = \frac{me\lambda}{2\pi\hbar^2}$$
$$f_e(q) = \frac{2\pi\mathrm{i}}{\lambda} \int_0^\infty f_0(qr) \left\{ 1 - \exp\left[\mathrm{i}\sigma \int \Phi(\mathbf{r}) \mathrm{d}z \right] \right\} r \,\mathrm{d}r$$

 $\left(+ \right)$

 $\psi_{\rm inc}({\bf r})$

 $\psi_{\rm S}({f r})$

For acquiring an image, we propagate $\psi_{\rm S}({\bf r})$ through an electron-optical system:

 $I_{\text{detector}} \propto |\text{FT}^{-1}\{\psi_{\text{S}}(\mathbf{Q}) \text{ TF}(\mathbf{Q})\}|^2$

Dr. Konečná – **CPO VUT** 2022/2023

 $f_e(q)$

Elastic scattering on a signle atom

Final electron wave function after the interaction with an atom:

$$\psi_{\rm S}(\mathbf{r}) = \psi_{\rm inc}(\mathbf{r}) + f_e(q) \frac{\exp(i \mathbf{q} \cdot \mathbf{r})}{r}$$

Scattering cross section:
$$\sigma = \frac{me\lambda}{2\pi\hbar^2}$$
$$f_e(q) = \frac{2\pi i}{\lambda} \int_0^\infty J_0(qr) \left\{ 1 - \exp\left[i\sigma \int \Phi(\mathbf{r}) dz\right] \right\} r dr$$

Calculation for $\psi_{\rm inc} \propto \exp(i 2\pi z/\lambda)$ 200 keV electrons (Kirkland; Advanced computing in EM)

Dr. Konečná – **CPO VUT** 2022/2023

S

Transfer of Image through the optical system

Incoming Wave $\psi_{inc}(r)$ $\psi_{\rm S}(\mathbf{r}) = \psi_{\rm inc}(\mathbf{r}) + f_e(q) \frac{\exp(\mathrm{i} \mathbf{q} \cdot \mathbf{r})}{\exp(\mathrm{i} \mathbf{q} \cdot \mathbf{r})}$ Weak Phase Approximation Sample Amplitude Influence A(r)Sample Phase Influence $\varphi(r) = f_{\rho}(q)$ Exit Wave $\psi_s(r) = A(r)\psi_{inc}(r)e^{i\varphi(r)}$ when $A(r) \ll 1$ and $\varphi(r) \ll 1, \varepsilon(r) = lnA(r)$ and assumption $\psi_{inc}(r) = 1$ (parallel illumination) Exit Wave $\psi_s(r) = \psi_{inc}(r)[1 + \varepsilon(r) + i\varphi(r)]$ $\psi_{bfp}(q) = FT\{\psi_s(r)\}$ $\psi_{hfn}(q) = \delta(q) + E(q) + i\Phi(q)$ $C_{3,0}$ - spherical aberration Aberrations addition $W(q) = \frac{\pi}{2} (C_{3,0}q^4 \lambda^3 + C_{1,0}q^2 \lambda)$ $C_{1,0}$ - defocus $\psi_{bfp,ab}(q) = \delta(q) + E(q)e^{-iW(q)} + i\Phi(q)e^{-iW(q)}$ **Optical Intensity at Image Plane** $I(R) = |\psi_m(Rde_t)|^2 = FT\psi_{bfp,ab}FT\psi_{bfp,ab}$

Optical Intensity at Image Plane with Dumping Envelope (Systém imperefections) $I(R) = |\psi_m(Rde_t)|^2 = E_t * E_s E_d E_u \{1 - 2\varphi(Q) \sin(W(Q)) + 2\varepsilon(Q) \cos(W(Q))\}$

Phase shift – Carbon sample

Michal Brzica bachelor thesis – derived from RICOLLEAU, C., et al. Random vs realistic amorphous carbon models for high resolution microscopy and electron diffraction. Journal of Applied Physics, 2013, 114.21: 213504. ISSN 0021-8979. Available from DOI: 10.1063/1.4831669.

Contrast Transfer Function

 $I(R) = |\psi_m(Rde_t)|^2 = FT\psi_{bfp,ab}\overline{FT\psi_{bfp,ab}}$ $I(R) = |\psi_m(Rde_t)|^2 = \{1 - 2\varphi(Q)\sin(W(Q)) + 2\varepsilon(Q)\cos(W(Q))\}$

<u>Contrast Transfer Function (CTF)</u> Describing optical property of TEM

 $CTF(\vec{q}') = E_t(q')E_s(\vec{q}')E_d(\vec{q}')E_u(\vec{q}') \cdot Intenzita(\vec{q}') \in \langle -1; 1 \rangle$

where

 $E_{t}(q')$ - temporal coherency

 $E_{\rm s}(\vec{q}')$ - spatial coherency

 $E_{\rm d}(\vec{q}')$ - drift impact

 $E_{\rm u}(\vec{q}')$ - vibration dumping

 $E_{t}(\vec{q}') = e^{-(\pi\lambda q^{2}H/4)^{2}/ln^{2}}, H(\Delta E, \Delta U, \Delta I)$

 $E_{s}(\vec{q}') = e^{-\pi^{2}(C_{3,0}\lambda^{2}q'^{3} - C_{1,0}q')^{2}\alpha_{i}^{2}/ln2}$

Observed Intensity on PC

CTF is not seen directly on our PC!

Figure 4.2: Scheme of the normalized observed intensity.

Michal Brzica bachelor thesis – derived VULOVIĆ, Miloš, et al. Image formation modeling in cryo-electron microscopy. Journal of structural biology, 2013, 183.1: 19-32. ISSN 1047-8477. Available from DOI: 10.1016/j.jsb.2013.05.008.

TEM – phase contrast I.

Based on electron interference – sample is pattern.

Using phase part of CFT.

Main role above magnification 300kx.

 $I(R) = |\psi_m(Rde_t)|^2 = Et * \{1 - 2\varphi(Q)\sin(W(Q)) + 2\varepsilon(Q)\cos(W(Q))\}$

Non-trully atomic resolution – vacancy atoms are not clear visible – only decreasing of intensity is detected.

This contrast is used in HR-TEM imaging.

TEM – phase contrast II.

Interpretation of image is not easy. Importance to know what it should be seen – theoretical calculation.

TEM imaging – Influence of Defocus

Modulating CTF

 $W(\vec{q}) = \frac{\pi}{\lambda} C_{1,0} \lambda^2 \vec{q}^2 + \frac{1}{2} C_{3,0} \lambda^4 \vec{q}^4$ $\psi_{\rm bfp,ab}(\vec{q}) = \delta(\vec{q}) + E(\vec{q}) e^{-iW(\vec{q})} + i\Phi(\vec{q}) e^{-iW(\vec{q})}$ Intenzita $(\vec{q}')_{\rm det} = (\mathrm{IFT}\{\psi_{\rm bfp,ab}(\vec{q}/M)\})^2$ Intenzita $(\vec{q}')_{\rm det} = E_{\rm t}(q') E_{\rm s}(\vec{q}') E_{\rm d}(\vec{q}') E_{\rm u}(\vec{q}') \cdot \mathrm{Intenzita}(\vec{q}')$

Spatial dumping envelope

 $E_{\rm S}(\vec{q}') = e^{(C_{3,0}\lambda^2 q'^3 - C_{1,0}q')^2 \alpha_i^2/\ln 2}$

 α_i is convergent angle of illumination $C_{3,0}$ - spherical aberration $C_{1,0}$ - defocus

- Practical hint:
 - Higher defocus promote contrast in low frequecies (lost at higher)
 - Work in Parallel illumination

TEM – phase contrast - Influence of Defocus

TEM – phase contrast III.

SPA particle with different defocus

https://cryoem101.org/chapter-5/

TEM imaging – Influence of Cond Aperture

Definition of illuminating area + convergent angle

Intenzi $ta(\vec{q}')_{det} = E_t(q')E_s(\vec{q}')E_d(\vec{q}')E_u(\vec{q}')$ · Intenzi $ta(\vec{q}')$

• Spatial dumping envelope $E_{s}(\vec{q}') = e^{(C_{3,0}\lambda^{2}q'^{3} - C_{1,0}q')^{2}\alpha_{i}^{2}/ln2}$

 α_i is convergent angle of illumination $C_{3,0}$ - spherical aberration $C_{1,0}$ - defocus

- Practical hint:
- Work as close to parallel illumination feel free to use

Gun lens or spot size to manage your dose

TEM imaging – Influence of Cond Aperture

TEM imaging – Influence of Obj Aperture

• Limiting max transfer angle/reciprocal frequency

Sample

Obj aperture

- Always image stigmate after objective ap insertion
- Using objective aperture to verify non-linear imaging

TEM imaging – Influence of Obj Aperture

No objective aperture Objective aperture inserted

TEM imaging – Influence of Obj Aperture

20

TEM imaging – Influence of SA Aperture

- Limiting FOV(\vec{r})
- No advantage for TEM imaging

 $\psi_{\text{out}}(\vec{r}) = 1 + \epsilon(\vec{r}) + i\varphi(\vec{r})$

TEM imaging – Influence of Detector

Critical for TEM imaging

$$\begin{aligned} \text{Intensity}_{\text{ob}}(\vec{r'}) &= \text{I}_{\text{rn}} + \text{I}_{\text{dc}} + \text{CF} \\ & \cdot \text{IFT} \left[\text{FT} \left[P_{\text{oiss}} \left(\Phi_{\text{e}} \cdot \text{IFT}^{-1} \left[\text{CTF}_{\text{optical}}(\vec{q'}) \sqrt{\text{DQE}(\vec{q'})} \right] \right) \right] \cdot \text{NTF}(\vec{q'}) \end{aligned}$$

- I_{rn} camera read-out noise
- I_{dc} dark current
- CF Conversion factor how much primar electrons are count as 1 signal
- Φ_e number of primary electron on a pixel
- $DQE = \frac{(MTF)^2}{PowerSpectrum}$ = "how well camera can trasfer details"
- *NTF* Noise Transfer Function (related to non-elastic scattering of the sample
 - Practical hint:
 - Make your Dark current calibration each 2 weeks or monthly
 - Check your camera cooling stability
 - Do not overexpose your camera

Sample SA aperture Intenzi $ta(\vec{r}')_{det}$

TEM imaging – Influence of Detector

Diffraction imaging – Influence of SA Aperture

- SA aperture selecting Sample region for Diffraction
- SA selection vs Nano Beam Diffraction

area

 No fringes in SA image

 $\psi_0(\vec{r}) = 1$

٠

- Fringes in SA image
- Illuminating whole sample

Illuminating only selected

 $\psi_0(\vec{r}) = A/\sqrt{r^2 + z^2} e^{\pm i \overrightarrow{k} \sqrt{r^2 + z^2}}$

 $\psi_{\text{out}}(\vec{r}) = 1 + \epsilon(\vec{r}) + i\varphi(\vec{r})$

$$\psi_{\text{out}}(\vec{r}) = 1 + \epsilon(\vec{r}) + i\phi(\vec{r})$$

- Practical hint fo SA
 - use C2 overfocus in diffraction to localize your particle accuratelly
- Allways stigmate first cond stigmator then diffr. one

Sample Sample SA aperture

SA selection

NanoBeam Diff

Diffraction imaging – Influence of Detector

- Not so Critical for Diffraction imaging
- DO NOT OVERSATURATE THE CENTRAL SPOT!!!
 → RISK OF CAMERA DAMAGE!!!

$$\begin{split} \text{Intensity}_{\text{ob}}(\vec{r'}) &= \text{I}_{\text{rn}} + \text{I}_{\text{dc}} + \text{CF} \\ & \cdot \text{IFT}\left[\text{FT}\left[P_{\text{oiss}}\left(\Phi_{\text{e}} \cdot \text{IFT}^{-1}\left[\text{CTF}_{\text{optical}}(\vec{q'})\sqrt{\text{DQE}(\vec{q'})}\right]\right)\right] \cdot \text{NTF}(\vec{q'})\right] \end{split}$$

- Irn camera read-out noise
- I_{dc} dark current
- CF Conversion factor how much primar electrons are count as 1 signal
- Φ_e number of primary electron on a pixel
- $DQE = \frac{(MTF)^2}{PowerSpectrum}$ = "how well camera can trasfer details"
- *NTF* Noise Transfer Function (related to non-elastic scattering of the sample
 - Practical hint:
 - Shield your Zero order diffraction peak to avoid damaging camera
 - CL as magnification

Diffraction imaging – Influence of Cond Aperture

- Non-critical for SAED defining mainly illuminated FOV
- Critical for CBED
 - Definition of Ronchigram size

 $D_{ronchi}(\vec{q}) = D_{ap}(r)/f$

 D_{ronchi} (\vec{q}) - size of ronchigram in reciprocal space D_{ap} (\vec{r}) - size of C2 aperture f - focal lenght of condensor

- Practical hint
 - Allways condensor stigmate on Ronchigram

\$CEITEC

Conclusion

TEM imaging providing atomic resolution

Knowledge of your system setup is crucial for image interpretation (further processing)

