data<-c(27, 82, 115, 126, 155, 161, 243, 294, 340, 384, 457, 680, 855, 877, 974, 1193, 1340, 1884, 2558, 15743) data #a+c) maximalizujme logaritmickou verohodnost logverohodnost<-function(x){ logverohodnost<-sum(dlnorm(data,x[1],x[2],log=TRUE)) } opt<-optim(c(4,1),logverohodnost,control=list(fnscale=-1),hessian=TRUE) opt #MLE muhat=opt$par[1] sigmahat=opt$par[2] muhat sigmahat #Odhady podle vzorce m<-mean(log(data)) s<-sqrt(mean((log(data)-m)^2)) m s #b+d) #odhad Fisherovy informacni matice pro cely vektor (X1,...,Xn), tj. n*J(theta_hat) I<- -opt$hessian I #odhad variancni matice numericky round(solve(I),4) #odhad variancni matice ze vzorce Ihat<-matrix(c(sigmahat^2/20,0,0,sigmahat^2/40),nrow=2) Ihat # IS pro mu je muhat-sqrt(solve(I)[1,1])*qnorm(0.975) muhat+sqrt(solve(I)[1,1])*qnorm(0.975) # IS pro sigma je sigmahat-sqrt(solve(I)[2,2])*qnorm(0.975) sigmahat+sqrt(solve(I)[2,2])*qnorm(0.975) ############################### #2.) #a) exp(muhat+sigmahat^2/2) #b) v<-c(exp(muhat+sigmahat^2/2), exp(muhat+sigmahat^2/2)*sigmahat)%*%solve(I)%*%c(exp(muhat+sigmahat^2/2), exp(muhat+sigmahat^2/2)*sigmahat) v exp(muhat+sigmahat^2/2)-sqrt(v)*qnorm(0.975) exp(muhat+sigmahat^2/2)+sqrt(v)*qnorm(0.975)