
The course introductory notes

- Special attention will be given to the **demonstration and explanation** of selected statistical methods and techniques.
- · Students will conduct their own analyses of the data provided.
- $\ensuremath{\textbf{Practical part}}$ will use either internet resources or the R programming environment
- Very basic knowledge of descriptive statistics is assumed
- Written test at the end of the whole course
- All materials available in IS (Information system Study materials)

The first lecture contents

- 1. Introductory terms
- 2. Selected data sources on climate change
- 3. Climate Explorer (CE)
- 4. Introductory statistics in CE

Contemporary climatology

Traditional and new sub-disciplines of climatology are given a new dimension in the current global change:

Data assimilation, re-analysis

https://epic.awi.de/id/eprint/25075/1/DA_overview.pdf

Atribution analysis

- World Weather Attribution Exploring the contribution of climate change to extreme weather events
- o <u>https://www.worldweatherattribution.org/</u>
- Urban climatology

 - 。 Urban Climate Change Research Network o https://uccrn.ei.columbia.edu/
- o "Open climate science" Climate-lab book o <u>http://www.climate-lab-book.ac.uk/about/</u>

Contemporary climatology

Among other things, it is typical for contemporary climatology:

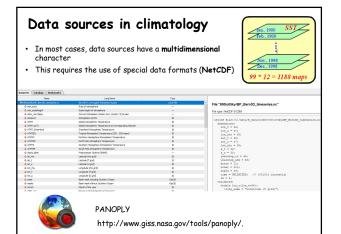
- High complexity of the studied phenomena in time and space
- Their stochastic nature (some phenomena do not have a clear cause, there is internal climate variability)
- + It uses its own methodology with a strong statistical basis
- It deals with defining **uncertainties**, it can only give a probabilistic statement about a number of phenomena
- Climatology is not an experimental science (it does not have a "laboratory"). At a given time and place, only one realization of the course of the weather is available.
- Numerical models play the role of "laboratory" in climatology

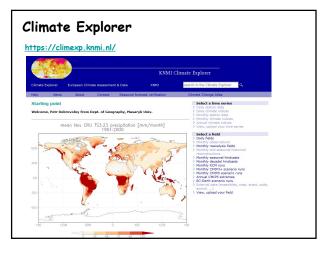
Data sources in contemporary climatology

- $\boldsymbol{\cdot}$ Meteorological observations and measurements
 - Stations point measurements
 - spatial fields (remote sensing, interpolation)

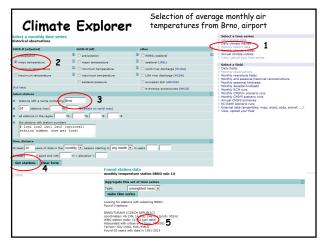
a would

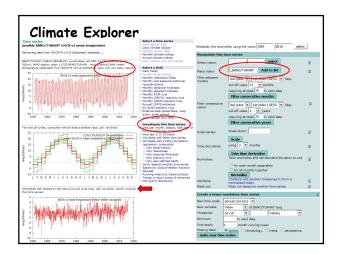
- Meteorological variables, e.g. eir temperature
- climatological characteristics, e.g. number of tropical days

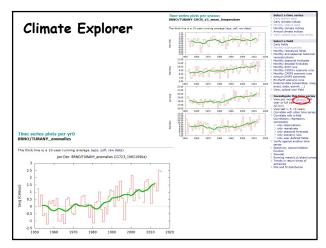

satellite climatology

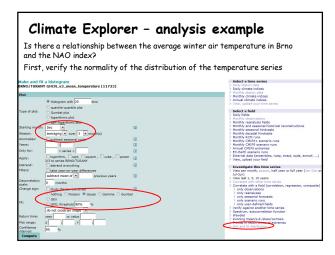

- climate indices, e.g. ENSO Index
- Model outputs (global, regional, local)
- Reanalyses

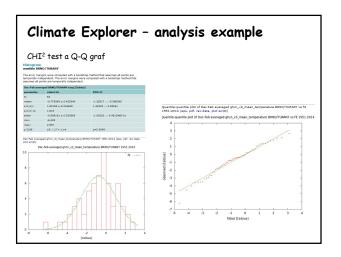
N٨

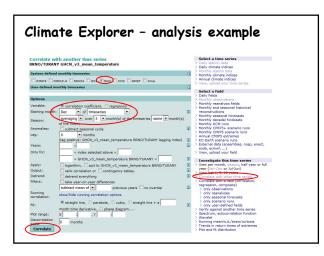

Paleoclimatology proxy reconstructions

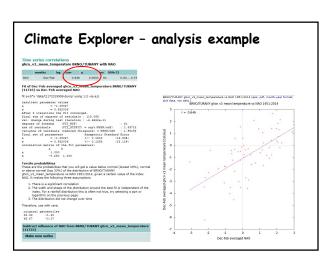

March 1997 Torrestore Torrestore

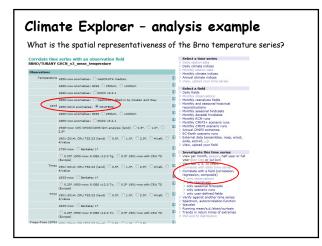


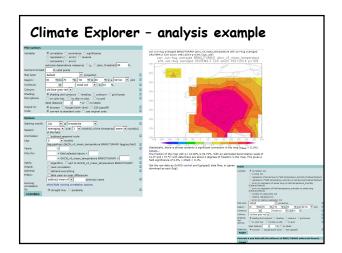


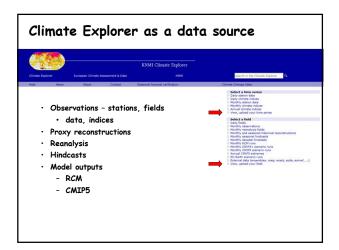


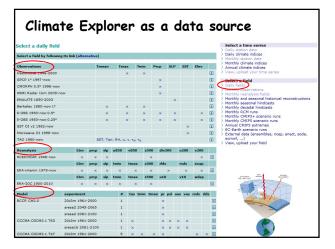


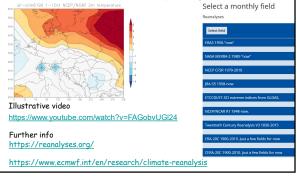


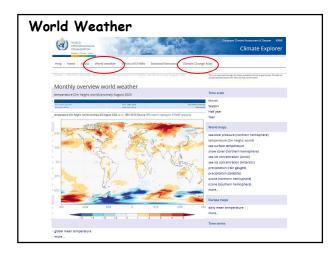




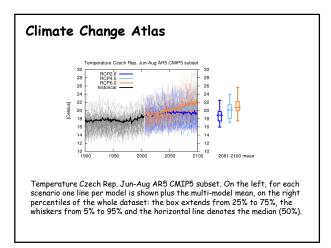


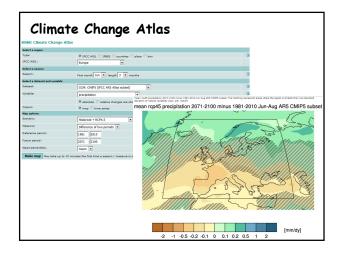


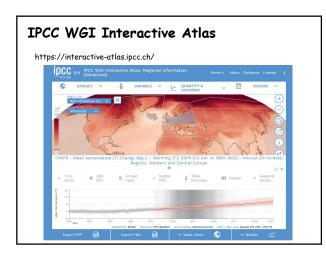



Reanalyses

- Reanalysis is an objective analysis of meteorological data applied backwards to the data and is also referred to as a method of physically consistent ("correct") interpolation.
- It links meteorological measurements and observations (unevenly spaced, less frequent in the past) with a numerical prediction model that provides a "physically consistent" state of the atmosphere.
- The connection is realized statistically (e.g. similar to LSM) with the use of the assimilation method (joining/linking) of data.
- Unlike weather forecasting, in which the forecast model is constantly evolving, reanalysis is performed using a uniform approach - the used assimilation scheme does not evolve (it is so-called "frozen"). This enables the use of reanalyses, for example, in the study of climate change.
- Outputs from reanalyses may also contain variables for which measurements are not available for the given period.
- Current reanalyses cover the entire Earth three-dimensionally (in several layers), usually with a 6-hour step
- In terms of time, some are available for the entire 20th century, also developing in paleoclimatology


Reanalyses


- Climate Explorer provides a simple interface allowing access to reanalyses at daily or monthly resolution
- It also enables their visualization and basic processing



A. 200					
223	KNMI Climat			e Explorer	
Climate Explorer	European Climate Assessment & Data	KNMI		search in the Climate Explorer	
Help News	About Contact Seasonal for	recast verification	0	limate Change Atlas	
KNMI Climate Change Atlas				Users are strongly advised to study the short introduction. Specific help is available under the icons.	
Select a region				Further information	
Type:	IPCC WG1 O IPBES O countries O place	O box		 Short introduction IPCC WG1 AR5 report, notably Annex I "Atlas" 	
IPCC WG1:	World			> CMIP5 co-ordinated climate model experiments	
Select a season				> RCP scenario's	
Season:	First month Jan 💌, length 12 💌 months			Funding > KNNI	
Select a dataset and	variable			> Red Cross / Red Crescent Climate Centre > Dutch Ministry of Infrastructure and Environme	
Dataset:	GCM: CMIP5 (IPCC AR5 Atlas subset)			DGMI	
Variable:	near-surface temperature		L		
	absolute relative changes are shown				
Output:	map time series				
Map options					
Scenario:	Historical + RCP4.5		I.		
Measure:	Difference of two periods			o.	
Reference period:	1986 -2005				
Future period:	2081 -2100				
Mean/percentiles:	mean 💌				

